光学学报, 2016, 36 (11): 1101001, 网络出版: 2016-11-08   

拉曼激光雷达探测合肥西郊低对流层大气二氧化碳垂直分布的统计分析

Statistical Analysis of Lower-Troposphere CO2 Vertical Distribution Measured by Raman Lidar in Hefei Western Suburb
作者单位
1 中国科学院安徽光学精密机械研究所中国科学院大气成分与光学重点实验室, 安徽 合肥 230031
2 中国科学院大学, 北京 100049
摘要
利用拉曼激光雷达系统测量了合肥西郊低对流层(2 km以下)大气二氧化碳浓度的垂直分布,并对获得的数据进行系统定标和滑动平均处理,反演出大气二氧化碳的垂直浓度廓线。对2014年7月到2015年12月激光雷达观测数据进行反演和统计分析,初步得到了合肥地区低对流层大气二氧化碳垂直浓度廓线的变化规律。结果表明:1) 低对流层大气二氧化碳浓度垂直分布随高度增加而减小,在近地面150 m以下浓度较高,变化较剧烈,300 m以上大气二氧化碳的浓度廓线趋于平稳;2) 低对流层大气二氧化碳垂直浓度廓线呈明显的季节性分布特征,夏季廓线的整体浓度最小,冬季廓线的整体浓度最大;3) 低对流层大气二氧化碳垂直分布与月份有一定的相关性,整体廓线约以每年2×10-6增长。通过实验发现,二氧化碳垂直浓度随着高度增加非单调递减,在大约300~700 m高度区间存在二氧化碳富集区,随着天空渐渐变亮,此区间大气二氧化碳浓度有减小的趋势。
Abstract
The vertical concentration distribution of lower-troposphere (2 km below) atmospheric CO2 in Hefei western suburb is measured by Raman lidar system. By system calibration and moving average of the data, the vertical concentration profiles of atmospheric CO2 are retrieved. Through statistical analysis of the retrieved results of lidar observation data from July 2014 to December 2015, the variation patterns of lower-troposphere atmospheric CO2 vertical concentration distribution in Hefei western suburb are initially obtained. The results show that the CO2 vertical concentration distribution of lower-troposphere decreases with the increase of altitude, the concentration is rather high and changes intensely under near-surface 150 m, but the concentration of atmospheric CO2 above 300 m is getting stable. The lower-troposphere CO2 vertical concentration distribution shows obvious connection with the season, with a minimum in summer and a maximum in winter. The lower-troposphere atmospheric CO2 vertical distribution shows some correlation with the month, and the whole CO2 vertical concentration goes up with a rate of about 2×10-6 per year. Through the experiments, it is found that the CO2 vertical concentration shows a non-monotonical decrease with the altitude increase. There exists a CO2-rich area from 300 m to 700 m, and the CO2 concentration of this area decreases as the sky turns bright.
参考文献

[1] NOAA/ESRL. Use of NOAA ESRL data[Z/OL]. [2016-03-23].ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_annmean_gl.txt.

[2] Park B C, Prather M J. CO2 source inversions using satellite observations of the upper troposphere[J]. Geophysical Research Letters, 2001, 28(24): 4571-4574.

[3] 韦秋叶, 王先华, 叶函函, 等. 应用于高精度大气CO2遥感的空间外差技术研究[J]. 光学学报, 2014, 34(8): 0801006.

    Wei Qiuye, Wang Xianhua, Ye Hanhan, et al. Research of spatial heterodyne spectroscopy for atmospheric CO2 remote sensing with high precision[J]. Acta Optica Sinica, 2014, 34(8): 0801006.

[4] 江新华, 王先华, 叶函函, 等. CO2反演中大气散射影响的光程校正方法[J]. 光学学报, 2014, 34(8): 0801005.

    Jiang Xinhua, Wang Xianhua, Ye Hanhan, et al. Correction method of atmospheric scattering effect through optical path in CO2 retrieval [J]. Acta Optica Sinica, 2014, 34(8): 0801005.

[5] 于海利, 胡顺星, 苑克娥, 等. 合肥上空大气二氧化碳Raman激光雷达探测研究[J]. 光子学报, 2012, 32(8): 812-817.

    Yu Haili, Hu Shunxing, Yuan Ke′e, et al. Measurement of CO2 concentration profiles of lower-troposphere with Raman lidar[J]. Acta Photonica Sinica, 2012, 32(8): 812-817.

[6] NASA. Directors discretionary fund annual report[R]. [S.l.: s.n.], 2004: 1-3.

[7] 洪光烈, 张寅超, 赵曰峰, 等. 探测大气中CO2的Raman激光雷达[J]. 物理学报, 2006, 55(2): 983-987.

    Hong Guanglie, Zhang Yinchao, Zhao Yuefeng, et al. Raman lidar for profiling atmospheric CO2[J]. Acta Physica Sinica, 2006, 55(2): 983-987.

[8] 赵曰峰, 张寅超, 洪光烈, 等. 拉曼激光雷达信号采集及处理系统[J]. 中国激光, 2006, 33(6): 734-738.

    Zhao Yuefeng, Zhang Yinchao, Hong Guanglie, et al. Scheme on acquisition and disposal for Raman lidar system[J]. Chinese J Lasers, 2006, 33(6): 734-738.

[9] 赵曰峰, 张寅超, 洪光烈, 等. 大气CO2含量分布激光雷达监测[J]. 量子电子学报, 2006, 23(3): 355-359.

    Zhao Yuefeng, Zhang Yinchao, Hong Guanglie, et al. Lidar system for detecting the atmospheric CO2[J]. Chinese Journal of Quantum Electronics, 2006, 23(3): 355-359.

[10] 赵培涛, 张寅超, 胡顺星, 等. 差分吸收测污激光雷达光路分束设计[J]. 光学学报, 2007, 27(6): 957-961.

    Zhao Peitao, Zhang Yinchao, Hu Shunxing, et al. Design of beam-splitting optical path for differential absorption air pollution monitoring lidar[J]. Acta Optica Sinica, 2007, 27(6): 957-961.

[11] Zhao P T, Zhang Y C, Wang L A, et al. Capability of Raman lidar for monitoring the variation of atmospheric CO2 profile[J]. Chinese Physics B, 2008, 17(1): 335-342.

[12] 苑克娥, 张世国, 胡顺星, 等. 拉曼散射激光雷达反演二氧化碳测量结果的可靠性分析[J]. 红外与激光工程, 2014, 43(4): 1135-1139.

    Yuan Ke′e, Zhang Shiguo, Hu Shunxing, et al. Reliability analysis of Raman scattering lidar for measurement of atmospheric carbon dioxide profiles[J]. Infrared and Laser Engineering, 2014, 43(4): 1135-1139.

[13] 于海利, 胡顺星, 吴晓庆, 等. 拉曼激光雷达探测低对流层大气二氧化碳分布[J]. 光学学报, 2012, 32(8): 0801003.

    Yu Haili, Hu Shunxing, Wu Xiaoqing, et al. Measurement of CO2 concentration profiles of lower-troposphere with Raman lidar[J]. Acta Optica Sinica, 2012, 32(8): 0801003.

[14] 胡顺星, 张世国, 苑克娥, 等. 拉曼激光雷达测量大气二氧化碳不确定性分析[J]. 量子电子学报, 2013, 30(1): 80-83.

    Hu Shunxing, Zhang Shiguo, Yuan Ke′e, et al. Atmospheric CO2 uncertainty in Raman lidar measurements[J]. Chinese Journal of Quantum Electronics, 2013, 30(1): 80-83.

[15] 尹起范, 盛振环, 魏科霞, 等. 淮安市大气CO2浓度变化规律及影响因素的探索[J]. 环境科学与技术, 2009, 32(4): 54-57.

    Yin Qifan, Sheng Zhenhuan, Wei Kexia, et al. Rule of atmospheric CO2 variations and affecting factors in urban area of Huai′an[J]. Environmental Science & Technology, 2009, 32(4): 54-57.

孙培育, 苑克娥, 胡顺星, 黄见. 拉曼激光雷达探测合肥西郊低对流层大气二氧化碳垂直分布的统计分析[J]. 光学学报, 2016, 36(11): 1101001. Sun Peiyu, Yuan Ke′e, Hu Shunxing, Huang Jian. Statistical Analysis of Lower-Troposphere CO2 Vertical Distribution Measured by Raman Lidar in Hefei Western Suburb[J]. Acta Optica Sinica, 2016, 36(11): 1101001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!