中国激光, 2011, 38 (11): 1102001, 网络出版: 2011-10-12   

流道截面参量对微通道水冷镜热变形的影响

Influence of Channel Parameters on Thermal-Deformation of Microchannel Mirror
作者单位
华中科技大学光电子科学与工程学院武汉光电国家实验室(筹), 湖北 武汉 430074
摘要
采用将有限体积法求解三维层流传热方程获得的温度场耦合到ANSYS进行热变形分析的方法,研究了流道截面形状和尺寸对微通道水冷镜内传热现象和镜面热畸变的影响。计算了矩形、梯形、圆形3种截面形状以及3种不同水力直径(百微米量级)下微通道水冷镜的平均换热系数、温升和镜面热变形。结果表明,同一条流道,各壁面温度并不随激光辐照面和镜面呈对称分布,最高温度偏向下游;侧壁的换热系数最大,且沿水流方向逐步减小;流道距进水口距离越大,其换热系数越小。在3种截面形状微通道中,减小截面尺寸可获得较大换热系数,且梯形截面微通道水冷镜能获得最小的镜面热变形量,在热流密度为14730 W/m2,水力直径为239 μm,入口速度为2.54 m/s的条件下,其镜面热变形仅为0.016 μm。
Abstract
The effect of cross-section shape and geometrical parameters of the channel on heat transfer and thermal deformation of the microchannel water-cooled mirror is studied by analyzing the temperature field obtained by using finite volume method to solve the three-dimensional steady laminar flow and heat transfer equations, and the deformation obtained by coupling the temperature field to ANSYS software. Three different cross-section shapes of microchannel, i.e., rectangle, trapezoid and circle, are investigated in this paper. Average heat transfer coefficient, temperature inereasing and thermal deformation of mirror of each shape examined with three geometrical dimensions, are simulated. It is found that for the same channel, temperature distribution is not symmetrical, the highest temperature moves to the downstream, the heat transfer coefficient of each interface is also different, the heat transfer coefficient of side wall is the biggest, heat transfer coefficient of other walls decreases along the water flow direction. For the mirror using the same shape microchannel and hydraulic diameter, the heat transfer coefficient decreases as the distance of the channel from water inlet increases. The average heat transfer coefficient and thermal deformation are related to hydraulic diameter and channel shape. Reducing hydraulic diameter may help to induce high heat transfer coefficient. The trapezoid channel mirror has the smallest thermal deformation among the three shapes channel mirrors. At the condition of heat flux of 14730 W/m2, hydraulic diameter of 239 μm and water inlet velocity of 2.54 m/s, the thermal deformation of the mirror with trapezoid channel is only 0.016 μm.
参考文献

[1] 杜燕贻, 安建祝, 束小建. 腔镜热变形对非稳腔光场特性的影响[J]. 强激光与粒子束, 2008, 20(8): 1332~1337

    Du Yanyi, An Jianzhu, Shu Xiaojian. Effect of thermal distortion of mirror on characteristics of laser beam in unstable resonator[J]. High Power Laser and Particle Beams, 2008, 20(8): 1332~1337

[2] 刘泽金, 周朴, 许晓军. 高能激光光束质量通用评价标准的探讨[J]. 中国激光, 2009, 36(4): 773~778

    Liu Zejin, Zhou Pu, Xu Xiaojun. Study on universal standard for evaluating high energy beam quality[J]. Chinese J. Lasers, 2009, 36(4): 773~778

[3] V. V. Apollonov, A. I. Barchukov, V. N. Lukanin et al.. Possibility of using structures with open pores in construction of cooled mirrors[J]. Sov. J. Quantum Electron., 1978, 8(5): 672~673

[4] V. V. Apollonov, P. I. Bystrov, Y. A. Brovalskii et al.. Feasibility of using liquid-metal heat carriers to cool power optics components made of porous structures[J]. Sov. J. Quantum Electron., 1981, 11(6): 796~798

[5] D. B. Tuckerman, R. E. W. Pease. High performance heat sinking for VLSL[J]. IEEE Electr. Device Lett., 1981, EDL-2(5): 126~129

[6] J. Judy, D. Maynes, B. W. Webb. Characterization of frictional pressure drop for liquid flows through microchannels[J]. Int. J. Heat and Mass Transfer, 2002, 45(17): 3477~3489

[7] Weilin Qu, Issam Mudawar. Experimental and numerical study of pressure drop and heat transfer in a single phase micro-channel heat sink[J]. Int. J. Heat and Mass Transfer, 2002, 45(12): 2549~2565

[8] Poh-Seng Lee, Suresh V. Garimella, Dong Liu. Investigation of heat transfer in rectangular microchannels[J]. Int. J. Heat and Mass Transfer, 2005, 48(9): 1688~1704

[9] 余亮英, 程祖海, 朱海红 等. 强激光作用下水冷硅镜沟槽参数的模拟分析[J]. 强激光与粒子束, 2007, 19(3): 353~356

    Yu Liangying, Cheng Zuhai, Zhu Haihong et al.. Channel parameter analysis of water-cooled silicon mirror for high-energy laser[J]. High Power Laser and Particle Beams, 2007, 19(3): 353~356

[10] 余文峰, 程祖海, 孙峰 等. 高功率多层水冷硅基反射镜的研究[J]. 中国激光, 2004, 31(s): 489~491

    Yu Wenfeng, Cheng Zuhai, Sun Feng et al.. Investigation of the multilayer water-cooling Si mirror used in high power laser[J]. Chinese J. Lasers, 2004, 31(s): 489~491

[11] 陈佳元. 高功率TEA CO2激光器腔镜热稳定性研究[D]. 武汉: 华中科技大学, 2009

    Chen Jiayuan. Study on the Stability of Mirrors of High Power TEA CO2 Laser[D]. Wuhan. Huazhong University of Science and Technology, 2009

[12] 李斌, 焦路光, 刘亮 等. 射流式碳化硅水冷镜数值模拟[J]. 中国激光, 2011, 38(2): 0202009

    Li Bin, Jiao Luguang, Liu Liang et al.. Numerical simulation of water jet cooled SiC mirror[J]. Chinese J. Lasers, 2011, 38(2): 0202009

[13] 尧舜, 丁鹏, 刘江 等. 高光束质量大功率半导体激光阵列的微通道热沉[J]. 中国激光, 2009, 36(9): 2286~2289

    Yao Shun, Ding Peng, Liu Jiang et al.. Microchannel heatsink of high beam quality semiconductor laser array[J]. Chinese J. Lasers, 2009, 36(9): 2286~2289

[14] Hao Li, Michael G. Olsen. MicroPIV measurements of turbulent flow in square microchannels with hydraulic diameters from 200 μm to 640μm[J]. Int. J. Heat and Fluid Flow, 2006, 27(1): 123~134

[15] C. Rands, B. W. Webb, D. Maynes. Characterization of transition to turbulence in microchannels[J]. Int. J. Heat and Mass Transfer, 2006, 49(17-18): 2924~2930

[16] 陶文锉. 数值传热学(第二版)[M]. 西安: 西安交通大学出版社, 2001

    Tao Wencuo. Numerical Heat Transfer (Second edition)[M]. Xi′an: Xi′an Jiaotong University Press, 2001

[17] Andrei G. Fedorov, Raymond Viskanta. Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging[J]. Int. J. Heat and Mass Transfer, 2000, 43(3): 399~415

[18] F. P. Incropera, D. P. DeWitt. Fundamentals of Heat and Mass Transfer[M]. New York: Wiley, 1996

胡攀攀, 朱海红, 左都罗. 流道截面参量对微通道水冷镜热变形的影响[J]. 中国激光, 2011, 38(11): 1102001. Hu Panpan, Zhu Haihong, Zuo Duluo. Influence of Channel Parameters on Thermal-Deformation of Microchannel Mirror[J]. Chinese Journal of Lasers, 2011, 38(11): 1102001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!