Matter and Radiation at Extremes, 2018, 3 (4): 188, Published Online: Oct. 2, 2018  

Collimated gamma rays from laser wakefield accelerated electrons

Author Affiliations
1 Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
4 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
5 Kansai Photon Science Institute (KPSI), National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
6 Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
7 SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
Abstract
Betatron radiation from laser wakefield accelerated electrons and X-rays scattered off a counter-propagating relativistic electron bunch are collimated and hold the potential to extend the energy range to hard X-ray or gamma ray band. The peak brightness of these incoherent radiations could reach the level of the brightest synchrotron light sources in the world due to their femtosecond pulse duration and source size down to a few micrometers. In this article, the principle and properties of these radiation sources are briefly reviewed and compared. Then we present our recent progress in betatron radiation enhancement in the perspective of both photon energy and photon number. The enhancement is triggered by using a clustering gas target, arousing a second injection of a fiercely oscillating electron bunch with large charge or stimulating a resonantly enhanced oscillation of the ionization injected electrons. By adopting these methods, bright photon source with energy over 100 keV is generated which would greatly impact applications such as nuclear physics, diagnostic radiology, laboratory astrophysics and high-energy density science.
References

[1] E. Eggl, S. Schleede, M. Bech, K. Achterhold, R. Loewen, et al., X-ray phase-contrast tomography with a compact laser-driven synchrotron source, Proc. Natl. Acad. Sci. U.S.A. 112 (2015), https://doi.org/10.1073/ pnas.1500938112.

[2] K. Achterhold, M. Bech, S. Schleede, G. Potdevin, R. Ruth, et al., Monochromatic computed tomography with a compact laser-driven X-ray source, Sci. Rep. 3 (2013) 1313, https://doi.org/10.1038/srep01313.

[3] H.-P. Schlenvoigt, K. Haupt, A. Debus, F. Budde, O. J€ackel, et al., A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator, Nat. Phys. 4 (2007) 130-133, https://doi.org/ 10.1038/nphys811.

[4] V. Malka, Laser plasma accelerators, Phys. Plasmas 55501 (2013), https://doi.org/10.1063/1.3695389.

[5] E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators, Rev. Mod. Phys. 81 (2009), https:// doi.org/10.1103/RevModPhys.81.1229.

[6] J.M. Tajima, T. Dawson, Laser electron accelerator, Phys. Rev. Lett. 43 (1979) 267-270.

[7] W. Lu, M. Tzoufras, C. Joshi, Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime, Phys. Rev. Accel. Beams 61301 (2007) 1-12, https://doi.org/10.1103/ PhysRevSTAB.10.061301.

[8] A. Pukhov, J. Meyer-ter-Vehn, Laser wake field acceleration: the highly non-linear broken-wave regime, Appl. Phys. B Lasers Opt. 74 (2002) 355-361, https://doi.org/10.1007/s003400200795.

[9] X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S.A. Yi, et al., Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV, Nat. Commun. 4 (2013) 1988, https://doi.org/10.1038/ncomms2988.

[10] K. Nakamura, C.G.R. Geddes, W.P. Leemans, B. Nagler, A.J. Gonsalves, et al., GeVelectron beams from a centimetre-scale accelerator, Nat. Phys. 2 (2006) 9-12, https://doi.org/10.1038/nphys418.

[11] C. Ding, W. Xiong, T. Fan, D.D. Hickstein, T. Popmintchev, et al., High flux coherent super-continuum soft X-ray source driven by a single-stage, 10 mJ, Ti:sapphire amplifier-pumped OPA, Opt. Express 22 (2014) 6194, https://doi.org/10.1364/OE.22.006194.

[12] L.M. Chen, M. Kando, M.H. Xu, Y.T. Li, J. Koga, et al., Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil, Phys. Rev. Lett. 100 (2008) 1-4, https://doi.org/ 10.1103/PhysRevLett.100.045004.

[13] L.M. Chen, W.M. Wang, M. Kando, L.T. Hudson, F. Liu, et al., High contrast femtosecond laser-driven intense hard X-ray source for imaging application, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 619 (2010) 128-132, https://doi.org/10.1016/ j.nima.2009.11.048.

[14] M. Li, K. Huang, L. Chen, W. Yan, M. Tao, et al., Laser-driven powerful kHz hard X-ray source, Radiat. Phys. Chem. (2016) 1-5, https://doi.org/ 10.1016/j.radphyschem.2016.01.042.

[15] Y. Glinec, J. Faure, L. Le Dain, S. Darbon, T. Hosokai, et al., Highresolution g-ray radiography produced by a laser-plasma driven electron source, Phys. Rev. Lett. 94 (2005) 1-4, https://doi.org/10.1103/ PhysRevLett.94.025003.

[16] L.M. Chen, W.C. Yan, D.Z. Li, Z.D. Hu, L. Zhang, et al., Bright betatron X-ray radiation from a laser-driven-clustering gas target, Sci. Rep. 3 (2013) 1912, https://doi.org/10.1038/srep01912.

[17] W. Yan, L. Chen, D. Li, L. Zhang, N.A.M. Hafz, et al., Concurrence of monoenergetic electron beams and bright X-rays from an evolving laserplasma bubble, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 5825-5830, https://doi.org/10.1073/pnas.1404336111.

[18] Y. Ma, L. Chen, D. Li, W. Yan, K. Huang, et al., Generation of femtosecond gamma-ray bursts stimulated by laser-driven hosing evolution, Sci. Rep. 6 (2016), https://doi.org/10.1038/srep30491.

[19] K. Huang, L.M. Chen, Y.F. Li, D.Z. Li, M.Z. Tao, et al., Resonantly Excited Betatron Hard X-rays from Ionization Injected Electron Beam in a Laser Plasma Accelerator, 2015, pp. 1-5, https://doi.org/10.1038/ srep27633.

[20] J.D. Jackson, Classical Electrodynamics, third ed., Wiley, New York, 2001.

[21] S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, et al., Femtosecond X rays from laser-plasma accelerators, Rev. Mod. Phys. 85 (2013) 1-48, https://doi.org/10.1103/RevModPhys.85.1.

[22] E. Esarey, B.A. Shadwick, P. Catravas, W.P. Leemans, Synchrotron radiation from electron beams in plasma-focusing channels, Phys. Rev. E e Stat. Nonlinear Soft Matter Phys. 65 (2002) 1-15, https://doi.org/ 10.1103/PhysRevE.65.056505.

[23] A. Rousse, K. Ta Phuoc, R. Shah, A. Pukhov, E. Lefebvre, et al., Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction, Phys. Rev. Lett. 93 (2004) 1-4, https://doi.org/ 10.1103/PhysRevLett.93.135005.

[24] S. Cipiccia, M.R. Islam, B. Ersfeld, R.P. Shanks, E. Brunetti, et al., Gamma-rays from harmonically resonant betatron oscillations in a plasma wake, Nat. Phys. 7 (2011) 867-871, https://doi.org/10.1038/ nphys2090.

[25] S. Kneip, C. McGuffey, J.L. Martins, S.F. Martins, C. Bellei, et al., Bright spatially coherent synchrotron X-rays from a table-top source, Nat. Phys. 6 (2010) 980-983, https://doi.org/10.1038/nphys1789.

[26] F. Albert, A.G.R. Thomas, S.P.D. Mangles, S. Banerjee, S. Corde, et al., Laser wakefield accelerator based light sources: potential applications and requirements, Plasma Phys. Control. Fusion 56 (2014) 84015, https:// doi.org/10.1088/0741-3335/56/8/084015.

[27] J. Wenz, S. Schleede, K. Khrennikov, M. Bech, P. Thibault, et al., Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source, Nat. Commun. 6 (2015) 7568, https:// doi.org/10.1038/ncomms8568.

[28] F. Albert, A.G.R. Thomas, Applications of laser wakefield acceleratorbased light sources, Plasma Phys. Control. Fusion 58 (2016) 103001, https://doi.org/10.1088/0741-3335/58/10/103001.

[29] C. Yu, R. Qi, W. Wang, J. Liu, W. Li, et al., Ultrahigh brilliance quasimonochromatic MeV g-rays based on self-synchronized all-optical Compton scattering, Sci. Rep. 6 (2016) 29518, https://doi.org/10.1038/ srep29518.

[30] S. Kneip, S.R. Nagel, C. Bellei, N. Bourgeois, A.E. Dangor, et al., Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity, Phys. Rev. Lett. 100 (2008) 1-4, https://doi.org/10.1103/PhysRevLett.100.105006.

[31] J. Ferri, X. Davoine, S.Y. Kalmykov, A. Lifschitz, Electron acceleration and generation of high-brilliance X-ray radiation in kilojoule, subpicosecond laser-plasma interactions, Phys. Rev. Accel. Beams 19 (2016) 101301, https://doi.org/10.1103/PhysRevAccelBeams.19.101301.

[32] F.V. Hartemann, D.J. Gibson, W.J. Brown, A. Rousse, K.T. Phuoc, et al., Compton scattering X-ray sources driven by laser wakefield acceleration, Phys. Rev. Spec. Top. e Accel. Beams 10 (2007) 1-8, https://doi.org/ 10.1103/PhysRevSTAB.10.011301.

[33] E. Esarey, S.K. Ride, P. Sprangle, Nonlinear Thomson scattering of intense laser pulses from beams and plasmas, Phys. Rev. E 48 (1993) 3003-3021, https://doi.org/10.1103/PhysRevE.48.3003.

[34] S.K. Ride, E. Esarey, M. Baine, Thomson scattering of intense lasers from electron beams at arbitrary interaction angles, Phys. Rev. E 52 (1995) 5425-5442, https://doi.org/10.1103/PhysRevE.52.5425.

[35] K. Khrennikov, J. Wenz, A. Buck, J. Xu, M. Heigoldt, et al., Tunable alloptical quasimonochromatic Thomson X-ray source in the nonlinear regime, Phys. Rev. Lett. 114 (2015) 1-5, https://doi.org/10.1103/ PhysRevLett.114.195003.

[36] N.D. Powers, I. Ghebregziabher, G. Golovin, C. Liu, S. Chen, et al., Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source, Nat. Photonics 8 (2013) 28-31, https://doi.org/10.1038/ nphoton.2013.314.

[37] G. Sarri, D.J. Corvan, W. Schumaker, J.M. Cole, A. Di Piazza, et al., Ultrahigh brilliance multi-MeV g-ray beams from nonlinear relativistic thomson scattering, Phys. Rev. Lett. 113 (2014) 1-5, https://doi.org/ 10.1103/PhysRevLett.113.224801.

[38] K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, et al., All-optical Compton gamma-ray source, Nat. Photonics 6 (2012) 308-311, https:// doi.org/10.1038/nphoton.2012.82.

[39] H.E. Tsai, X. Wang, J.M. Shaw, Z. Li, A.V. Arefiev, et al., Compact tunable Compton X-ray source from laser-plasma accelerator and plasma mirror, Phys. Plasmas 22 (2015), https://doi.org/10.1063/1.4907655.

[40] H. Vincenti, S. Monchoc_e, S. Kahaly, G. Bonnaud, P. Martin, et al., Optical properties of relativistic plasma mirrors, Nat. Commun. 5 (2014) 3403, https://doi.org/10.1038/ncomms4403.

[41] M. Nakatsutsumi, A. Kon, S. Buffechoux, P. Audebert, J. Fuchs, et al., Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity, Opt. Lett. 35 (2010) 2314-2316, https://doi.org/ 10.1364/OL.35.002314.

[42] A. Di Piazza, C. Mu¨ller, K.Z. Hatsagortsyan, C.H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys. 84 (2012) 1177-1228, https://doi.org/10.1103/ RevModPhys.84.1177.

[43] A.I. Titov, Cumulative multi-photon processes in electron-laser Compton scattering, Proc. Sci. (2015) 1-16.

[44] J. Gao, Thomson scattering from ultrashort and ultraintense laser pulses, Phys. Rev. Lett. 93 (2004) 18-21, https://doi.org/10.1103/PhysRev Lett.93.243001.

[45] O.E. Vais, S.G. Bochkarev, V.Y. Bychenkov, Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse, Plasma Phys. Rep. 42 (2016) 818-833, https://doi.org/10.1134/ S1063780X16090105.

[46] A. Oguz Er, J. Chen, P.M. Rentzepis, Ultrafast time resolved X-ray diffraction, extended X-ray absorption fine structure and X-ray absorption near edge structure, J. Appl. Phys. 112 (2012), https://doi.org/ 10.1063/1.4738372.

[47] A. Krol, A. Ikhlef, J.C. Kieffer, D.A. Bassano, C.C. Chamberlain, et al., Laser-based microfocused X-ray source for mammography: feasibility study, Med. Phys. 24 (1997) 725-732, https://doi.org/10.1118/1.597993.

[48] S. Gales, D.L. Balabanski, F. Negoita, O. Tesileanu, C.A. Ur, et al., New frontiers in nuclear physics with high-power lasers and brilliant monochromatic gamma beams, Phys. Scr. 91 (2016) 93004, https://doi.org/ 10.1088/0031-8949/91/9/093004.

[49] L.M. Chen, J.J. Park, K.H. Hong, J.L. Kim, J. Zhang, et al., Emission of a hot electron jet from intense femtosecond-laser-cluster interactions, Phys. Rev. E e Stat. Nonlinear Soft Matter Phys. 66 (2002) 17-20, https://doi.org/10.1103/PhysRevE.66.025402.

[50] J.H. Jeon, K. Nakajima, H.T. Kim, Y.J. Rhee, V.B. Pathak, et al., Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters, Phys. Plasmas 23 (2016), https://doi.org/10.1063/1.4956447.

Minghua Li, Liming Chen, Dazhang Li, Kai Huang, Yifei Li, Yong Ma, Wenchao Yan, Mengze Tao, Junhao Tan, Zhengming Sheng, Jie Zhang. Collimated gamma rays from laser wakefield accelerated electrons[J]. Matter and Radiation at Extremes, 2018, 3(4): 188.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!