光学 精密工程, 2017, 25 (4): 820, 网络出版: 2017-06-02   

采用相位调制方法的光纤干涉仪

Fiber interferometer based on phase generated carrier method
倪畅 1,2,*张鸣 1,2朱煜 1,2
作者单位
1 清华大学 摩擦学国家重点实验室, 北京 100084
2 清华大学 精密超精密制造装备及控制北京市重点实验室, 北京 100084
摘要
为了实现小巧紧凑且使用灵活的大量程位移测量, 提出了一种采用相位调制方法的光纤干涉仪。首先, 介绍相位调制方法, 分析内调制与外调制的特点, 指出由于内调制的局限性, 外调制更适于较大量程的位移测量。然后, 用数学推导和MATLAB仿真对已有的位移解算算法中的反正切法与微分交叉相乘法进行分析, 证明在毫米级量程的位移测量中反正切法优于微分交叉相乘法。最后, 搭建了采用相位调制方法的光纤干涉仪, 并进行了实验验证。实验结果表明: 相比于微分交叉相乘法, 反正切法更适用于毫米级以上量程的位移测量, 基于相位调制的光纤干涉仪在毫米级步进运动中的相对误差最大为255.21 nm, 标准差为78.56 nm, 基本满足高精度大量程的位移测量需求。
Abstract
In order to realize compact and flexible wide-range displacement measurement, a fiber interferometer with the Phase Generated Carrier(PGC) method was proposed. First, the PGC method was detailed. The analysis on the internal and external modulations revealed the limitation of internal modulation and indicated that the external modulation was more suitable for wide-range displacement measurement. Then, two existing displacement calculation algorithms were analyzed by mathematical deduction and MATLAB simulation, proving that PGC-ATAN algorithm is better than PGC-DCM algorithm in millimeter-scale displacement measurement. A fiber interferometer based on the PGC method was established and tested experimentally. The results indicate that compared to PGC-DCM algorithm, PGC-ATAN algorithm is a better candidate for millimeter-scale displacement measurement. The maximum relative error of the interferometer in a millimeter-scale step motion is 255.21 nm with a standard deviation of 78.56 nm. It can satisfy the system requirements of high-precision and wide-range in displacement measurements.
参考文献

[1] 李兵, 孙彬, 陈磊, 等. 激光位移传感器在自由曲面测量中的应用[J]. 光学 精密工程, 2015, 23(7): 1939-1947.

    LI B, SUN B, CHEN L,et al.. Application of laser displacement sensor to free-form surface measurement[J]. Opt. Precision Eng., 2015, 23(7): 1939-1947. (in Chinese)

[2] 赵维谦, 李文宇, 赵齐, 等. 被测件随机移相干涉面形测量方法[J]. 光学 精密工程, 2016, 24(9): 2167-2172.

    ZHAO W Q, LI W Y, ZHAO Q,et al.. Surface measurement by randomly phase shifting interferometry of measured element[J]. Opt. Precision Eng., 2016, 24(9): 2167-2172. (in Chinese)

[3] 刘兆武, 李文昊, 王敬开, 等. 纳米精度二维工作台测量镜的面形误差在线检测[J]. 光学 精密工程, 2016, 24(9): 2134-2141.

    LIU ZH W, LI W H, WANG J K,et al.. Online detection of profile deviation for nano precision 2-D stage mirror[J]. Opt. Precision Eng., 2016, 24(9): 2134-2141.(in Chinese)

[4] ELLIS J D.Field Guide to Displacement Measuring Interferometry [M]. Washington,DC: SPIE Press, 2014.

[5] DANDRIDGE A,TVETEN A B,GIALLORENZI T G.Homodyne demodulation scheme for fiber optic sensors using phase generated carrier[J].IEEE Journal of Quantum Electronics, 1982, 18(10): 1647-1653.

[6] 曹家年, 张立昆. 干涉型光纤水听器相位载波调制及解调方案研究[J]. 光纤与电缆及其应用技术, 1998(6): 3-7.

    CAO J N, ZHANG L K. Research on phase modulation and demodulation of interferometric fiber-optic hydrophone using phase generated carrier techniques[J]. Optical Fiber & Electric Cable, 1998(6): 3-7. (in Chinese)

[7] LIU Y, WANG L W, TIAN CH D, et al.. Analysis and optimization of the PGC method in all digital demodulation systems[J]. Journal of Lightwave Technology, 2008, 26(18): 3225-3233.

[8] THURNER K,BRAUN P F, KARRAI K K. Fabry-Pérot interferometry for long range displacement sensing[J]. Review of Scientific Instruments, 2013, 84(9): 095005.

[9] THURNER K, BRAUN P F,KARRAI K. Absolute distance sensing by two laser optical interferometry[J]. Review of Scientific Instruments, 2013, 84(11): 115002.

[10] THURNER K, QUACQUARELLI F-P,BRAUN P F,et al.. Fiber-based distance sensing interferometry[J]. Applied Optics, 2015, 54(10): 3051-3063.

[11] 柏林厚. 基于光频调制PGC解调系统的光源及其它若干问题研究[D]. 北京: 清华大学, 2005.

    BAI L H. Studies on the Laser and Other Issues in the PGC Demodulation System Based on Laser Modulation [D]. Beijing: Tsinghua University, 2005. (in Chinese)

[12] CHANDRIKA U K,PALLAYIL V. Signal distortion due to low-pass filtering in phase generated carrier demodulation schemes for interferometric sensors [C]. Proceedings of 2013,Ocean Electronics,IEEE,2013: 31-34.

[13] WANG G Q, XU T W, LI F. PGC demodulation technique with high stability and low harmonic distortion [J]. IEEE Photonics Technology Letters, 2012, 24(23): 2093-2096.

[14] LI R ZH, WANG X B, HUANH J B,et al.. Phase generated carrier technique for fiber laser hydrophone [J]. SPIE, 2013, 8914: 89140N.

[15] L CH R, DUAN F J, BO E, et al.. Sinusoidal phase-modulating fiber-optic interferometer fringe with a feedback control system[J]. Applied Optics, 2014, 53(27): 6206-6211.

[16] Renishaw新产品介绍[J]. 制造技术与机床, 2006(9): 124-126.

    Introduction to new products of Renishaw Ca,Ltd. [J]. Manufacturing Technology & Machine Tool, 2006(9): 124-126. (in Chinese)

[17] GERBERDING O. Deep frequency modulation interferometry[J]. Optics Express, 2015, 23(11): 14753-14762.

[18] 马东升, 董宁. 数值计算方法[M]. 第3版. 北京: 机械工业出版社, 2015.

    MA D SH, DONG N.Numerical Computation Method [M]. 3rd ed.. Beijing: China Machine Press, 2015. (in Chinese)

倪畅, 张鸣, 朱煜. 采用相位调制方法的光纤干涉仪[J]. 光学 精密工程, 2017, 25(4): 820. NI Chang, ZHANG Ming, ZHU Yu. Fiber interferometer based on phase generated carrier method[J]. Optics and Precision Engineering, 2017, 25(4): 820.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!