Collection Of theses on high power laser and plasma physics, 2006, 4 (1): 46, Published Online: Jun. 4, 2007  

Small-Scale Self-Focusing of Divergent Beams

Author Affiliations
1 中国科学院上海光学精密机械研究所高功率激光物理国家实验室, 上海 201800
2 中国科学院研究生院, 北京 100039
Abstract
The small-scale self-focusing of divergent beams is studied. Based on the nonlinear paraxial wave equation, the propagation equation of small-scale perturbation of divergent beams has been deduced with a coordinate transformation. The evolvement law of the growth critical frequency of small-scale perturbation, maximum growth frequency and relative B integral is obtained. The influence of the initial radius of divergent beams on small-scale self-focusing is discussed. It is found that for a given propagation distance, the fastest growing frequency, the maximum perturbation growth, and thus the B integral decrease with the decrease of the initial radius of divergent beams. For a given initial radius, as the propagation distance increases, the growth of the B-integral becomes slow and stops at last. Also, the expression for the distance at which the filaments are formed is obtained by local energy conservation, and it is shown that a small initial radius extends the filamentation distance.
References

[1] . T. Hunt, P. A. Renard, W. W. Simmons. Improved performance of fusion lasers using the imaging properties of multiple spatial filters. Appl. Opt., 1977, 16(4): 779-782.

[2] . T. Hunt, J. A. Glaze, W. W. Simmons et al.. Suppression of self-focusing through low-pass spatial filters and relay imaging. Appl. Opt., 1978, 17(13): 2053-2057.

[3] W. H. Williams, P. A. Renard, K. R. Manes et al.. Modeling of self-focusing experiments by beam propagation codes[R]. LLNL Laser Program Quarterly Report, 1996, UCRL-LR-105821-96-1: 1~8

[4] W. Williams, J. Trenholme, C. Orth et al.. NIF design optimization[R]. LLNL Laser Program Quarterly Report, 1996, UCRL-LR-105821-96-4: 181~191

[5] . I. Bespalov, V. I. Talanov. Filamentary structure of light beams in nonlinear liquids. JETP Lett., 1966, 3(11): 307-310.

[6] . Theory of small-scale self-focusing of intense laser beams in media with gain or loss. Acta Physica Sinica, 2000, 49(7): 1282-1286.

[7] Wen Shuangchun, Fan Dianyuan. Filamentation of intense laser beam in high power laser and the B integral[J]. Acta Optica Sinica, 2001, 21(11): 1331~1335 (in Chinese)
文双春, 范滇元. 高功率激光放大器中光束的成丝和B积分[J]. 光学学报, 2001, 21(11): 1331~1335

[8] Lin Xiaodong, Wang Xiao, Li Dayi et al.. Analysis of small-scale self-focusing effects in nonlinear media with gain[J]. Chin. J. Lasers, 2002, 29(5): 418~420 (in Chinese)
林晓东, 王逍, 李大义 等. 非线性增益介质中的小尺度自聚焦特性分析[J]. 中国激光, 2002, 29(5): 418~420

[9] Alan H. Paxton. Formation of filaments in expanding beams in semiconductor amplifiers[C]. Proc. SPIE, 1993, 1868: 244~250

[10] . Surette, David Mehuys. Filament formation in a tapered GaAlAs optical amplifier. Appl. Phys. Lett., 1993, 62: 2304-2306.

[11] . C. Abbi, Nitin C. Kothari. Theory of filament formation in self-focusing media. Phys. Rev. Lett., 1979, 43(26): 1929-1932.

[12] Edward A. Sziklas, A. E. Siegman. Diffraction calculations using fast Fourier transform methods[C]. Proc. IEEE, 1974, 62: 410~412

[13] Wen Shuangchun, Fan Dianyuan. Small-scale self-focusing of intense laser beams in nonlinear media with loss[J]. Chin. J. Lasers, 2000, B9(4): 356~360

Yalong Gu, Jianqiang Zhu. Small-Scale Self-Focusing of Divergent Beams[J]. Collection Of theses on high power laser and plasma physics, 2006, 4(1): 46.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!