光学学报, 2018, 38 (12): 1206006, 网络出版: 2019-05-10   

内嵌矩形金属块纳米圆盘结构等离子体多通道波分复用器研究 下载: 989次

A Plasmon Multi-Channel Wavelength-Division Multiplexer Constructed with a Nanodisk Structure Embedded in a Rectangular Metal Block
作者单位
1 桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
2 广西信息科技实验中心, 广西 桂林 541004
3 桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004
引用该论文

肖功利, 徐俊林, 杨宏艳, 韦清臣, 窦婉滢, 杨秀华, 李海鸥, 张法碧, 孙堂友. 内嵌矩形金属块纳米圆盘结构等离子体多通道波分复用器研究[J]. 光学学报, 2018, 38(12): 1206006.

Gongli Xiao, Junlin Xu, Hongyan Yang, Qingchen Wei, Wanying Dou, Xiuhua Yang, Haiou Li, Fabi Zhang, Tangyou Sun. A Plasmon Multi-Channel Wavelength-Division Multiplexer Constructed with a Nanodisk Structure Embedded in a Rectangular Metal Block[J]. Acta Optica Sinica, 2018, 38(12): 1206006.

参考文献

[1] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

[2] Wang X, Wang P, Chen C, et al. Active modulation of plasmonic signal with a subwavelength metal/nonlinear dielectric material/metal structure[J]. Chinese Optics Letters, 2010, 8(6): 584-587.

[3] Li X, Tan Q, Bai B, et al. Tunable directional beaming assisted by asymmetrical SPP excitation in a subwavelength metallic double slit[J]. Chinese Optics Letters, 2012, 10(5): 052401.

[4] Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding[J]. Nature Photonics, 2007, 1(11): 641-648.

[5] Maier S A, Kik P G, Atwater H A, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides[J]. Nature Materials, 2003, 2(4): 229-232.

[6] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193.

[7] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83-91.

[8] Zhao H W, Huang X G, Huang J T. Surface plasmon polaritons based optical directional coupler[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51(12): 1877-1882.

[9] Hossieni A, Massoud Y. A low-loss metal-insulator-metal plasmonic Bragg reflector[J]. Optics Express, 2006, 14(23): 11318-11323.

[10] Wang T B, Wen X W, Yin C P, et al. The transmission characteristics of surface plasmon polaritons in ring resonator[J]. Optics Express, 2009, 17(26): 24096-24101.

[11] Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 2006, 440(7083): 508-511.

[12] 肖功利, 刘小刚, 杨宏艳, 等. 基于金属圆弧孔阵列强透射的折射率传感特性[J]. 光学学报, 2018, 38(2): 0224001.

    Xiao G L, Liu X G, Yang H Y, et al. Refractive index sensing property based on extraordinary optical transmission of metal circular arc hole array[J]. Acta Optica Sinica, 2018, 38(2): 0224001.

[13] 吴冬芹, 黄翀, 杨玮枫. 基于石墨烯等离子体表面处理改善pH传感特性的研究[J]. 激光与光电子学进展, 2017, 54(1): 012401.

    Wu D Q, Huang C, Yang W F. Improvement on pH sensing properties based on surface treatment of graphene plasma[J]. Laser and Optoelectronics Progress, 2017, 54(1): 012401.

[14] Lin X S, Huang X G. Tooth-shaped plasmonic waveguide filters with nanometeric sizes[J]. Optics Letters, 2008, 33(23): 2874-2876.

[15] Lin X S, Huang X G. Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter[J]. Journal of the Optical Society of America B, 2009, 26(7): 1263-1268.

[16] Tao J, Huang X G, Lin X S, et al. A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure[J]. Optics Express, 2009, 17(16): 13989-13994.

[17] Tao J, Huang X G, Lin X S, et al. Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters[J]. Journal of the Optical Society of America B, 2010, 27(2): 323-327.

[18] 肖功利, 刘利, 杨宏艳, 等. 基于微腔耦合结构金属弯曲波导的光透射特性[J]. 光学学报, 2017, 37(12): 1213001.

    Xiao G L, Liu L, Yang H Y, et al. Light transmission characteristics of metal curved waveguide based on microcavity coupling structures[J]. Acta Optica Sinica, 2017, 37(12): 1213001.

[19] Yu N F, Blanchard R, Fan J, et al. Quantum cascade lasers with integrated plasmonic antenna-array collimators[J]. Optics Express, 2008, 16(24): 19447-19461.

[20] Yu N, Wang Q J, Pflügl C, et al. Semiconductor lasers with integrated plasmonic polarizers[J]. Applied Physics Letters, 2009, 94(15): 151101.

[21] Yu N F, Kats M A, Pflügl C, et al. Multi-beam multi-wavelength semiconductor lasers[J]. Applied Physics Letters, 2009, 95(23): 239901.

[22] Yu N F, Wang Q J, Kats M A, et al. Designer spoof surface plasmon structures collimate terahertz laser beams[J]. Nature Materials, 2010, 9(9): 730-735.

[23] Hu F F, Zhou Z P. Wavelength filtering and demultiplexing structure based on aperture-coupled plasmonic slot cavities[J]. Journal of the Optical Society of America B, 2011, 28(10): 2518-2523.

[24] Azar M T H, Zavvari M, Arashmehr A, et al. . Design of a high-performance metal-insulator-metal plasmonic demultiplexer[J]. Journal of Nanophotonics, 2017, 11(2): 026002.

[25] Zhan S P, Li H J, Cao G T, et al. Theoretical analysis of plasmon-induced transparency in ring-resonators coupled channel drop filter systems[J]. Plasmonics, 2014, 9(6): 1431-1437.

[26] Hu F F, Yi H X, Zhou Z P. Wavelength demultiplexing structure based on arrayed plasmonic slot cavities[J]. Optics Letters, 2011, 36(8): 1500-1502.

[27] Tao J, Huang X G, Zhu J H. A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators[J]. Optics Express, 2010, 18(11): 11111-11116.

[28] Kaminow I P, Mammel W L, Weber H P. Metal-clad optical waveguides: analytical and experimental study[J]. Applied Optics, 1974, 13(2): 396-405.

[29] Ruan Z C, Qiu M. Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances[J]. Physical Review Letters, 2006, 96(23): 233901.

[30] Rakic A D, Djurisic A B, Elazar J M, et al. Optical properties of metallic films for vertical-cavity optoelectronic devices[J]. Applied Optics, 1998, 37(22): 5271-5283.

[31] Kaminow I P, Mammel W L, Weber H P. Metal-cad optical waveguides: analytical and experimental study[J]. Applied Optics, 1974, 13(2): 396-405.

[32] Wang B, Wang G P. Plasmon Bragg reflectors and nanocavities on flat metallic surfaces[J]. Applied Physics Letters, 2005, 87(1): 013107.

[33] Haynes C L, van Duyne R P. Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics[J]. The Journal of Physical Chemistry B, 2001, 105(24): 5599-5611.

[34] Lu H, Liu X M, Mao D, et al. Tunable band-pass plasmonic waveguide filters with nanodisk resonators[J]. Optics Express, 2010, 18(17): 17922-17927.

[35] Beatty R W. Insertion loss concepts[J]. Proceedings of the IEEE, 1964, 52(6): 663-671.

肖功利, 徐俊林, 杨宏艳, 韦清臣, 窦婉滢, 杨秀华, 李海鸥, 张法碧, 孙堂友. 内嵌矩形金属块纳米圆盘结构等离子体多通道波分复用器研究[J]. 光学学报, 2018, 38(12): 1206006. Gongli Xiao, Junlin Xu, Hongyan Yang, Qingchen Wei, Wanying Dou, Xiuhua Yang, Haiou Li, Fabi Zhang, Tangyou Sun. A Plasmon Multi-Channel Wavelength-Division Multiplexer Constructed with a Nanodisk Structure Embedded in a Rectangular Metal Block[J]. Acta Optica Sinica, 2018, 38(12): 1206006.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!