中国激光, 2020, 47 (11): 1108001, 网络出版: 2020-10-23   

集成量子压缩光源中MgO∶LiNbO3晶体倍频系统研究 下载: 1038次封底文章

Frequency Doubling System for Integrated Quantum Squeezed Light Source Based on MgO∶LiNbO3 Crystal
作者单位
1 山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
2 中国空间技术研究院西安分院, 陕西 西安 710100
3 山西大学极端光学协同创新中心, 山西 太原 030006
引用该论文

田宇航, 王俊萍, 杨文海, 田龙, 王雅君, 郑耀辉. 集成量子压缩光源中MgO∶LiNbO3晶体倍频系统研究[J]. 中国激光, 2020, 47(11): 1108001.

Tian Yuhang, Wang Junping, Yang Wenhai, Tian Long, Wang Yajun, Zheng Yaohui. Frequency Doubling System for Integrated Quantum Squeezed Light Source Based on MgO∶LiNbO3 Crystal[J]. Chinese Journal of Lasers, 2020, 47(11): 1108001.

参考文献

[1] Yan Z H, Wu L, Jia X J, et al. Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles[J]. Nature Communications, 2017, 8: 718.

[2] Vahlbruch H, Mehmet M, Lastzka N, et al. Observation of squeezed light with 10-dB quantum-noise reduction[J]. Physical Review Letters, 2008, 100(3): 033602.

[3] Dwyer S, Barsotti L, Chua S, et al. Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light[J]. Optics Express, 2013, 21(16): 19047-19060.

[4] Zhang T, Goh K W, Chou C, et al. Quantum teleportation of light beams[J]. Physical Review A, 2003, 67(3): 033802.

[5] Sun X C, Wang Y J, Tian L, et al. Dependence of the squeezing and anti-squeezing factors of bright squeezed light on the seed beam power and pump beam noise[J]. Optics Letters, 2019, 44(7): 1789-1792.

[6] 牛娜, 曲大鹏, 窦微, 等. 蓝光二极管抽运掺镨氟化钇锂晶体腔内倍频348.9 nm紫外激光器[J]. 中国激光, 2018, 45(12): 1201003.

    Niu N, Qu D P, Dou W, et al. 348.9 nm intra-cavity frequency-doubling ultraviolet laser in blue laser diode pumped Pr∶YLF crystal[J]. Chinese Journal of Lasers, 2018, 45(12): 1201003.

[7] Cui X Y, Shen Q, Yan M C, et al. High-power 671 nm laser by second-harmonic generation with 93% efficiency in an external ring cavity[J]. Optics Letters, 2018, 43(8): 1666-1669.

[8] Yao X C, Chen H Z, Wu Y P, et al. Observation of coupled vortex lattices in a mass-imbalance Bose and fermi superfluid mixture[J]. Physical Review Letters, 2016, 117(14): 145301.

[9] Guo S L, Ge Y L, Han Y S, et al. Investigation of optical inhomogeneity of MgO∶PPLN crystals for frequency doubling of 1560 nm laser[J]. Optics Communications, 2014, 326: 114-120.

[10] Dingjan J, Darquié B, Beugnon J, et al. A frequency-doubled laser system producing ns pulses for rubidium manipulation[J]. Applied Physics B, 2006, 82(1): 47-51.

[11] Bakr W, Gillen J, Peng A, et al. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice[J]. Nature, 2009, 462(7269): 74-77.

[12] Simon J, Bakr W, Ma R C, et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice[J]. Nature, 2011, 472(7343): 307-312.

[13] 孟文东, 张海峰, 邓华荣, 等. 基于1.06 μm波长的空间合作目标及碎片高精度激光测距试验[J]. 物理学报, 2020, 69(1): 019502.

    Meng W D, Zhang H F, Deng H R, et al. 1.06 μm wavelength based high accuracy satellite laser ranging and space debris detection[J]. Acta Physica Sinica, 2020, 69(1): 019502.

[14] Yin W B, Ma W G, Wang L R, et al. Research on the distributed optical remote sensing of methane employing single laser source[J]. Chinese Optics letters, 2004, 2(2): 86-88.

[15] Shi S P, Wang Y J, Yang W H, et al. Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced infrared absorption[J]. Optics Letters, 2018, 43(21): 5411-5414.

[16] Wan Z J, Feng J X, Li Y J, et al. Comparison of phase quadrature squeezed states generated from degenerate optical parametric amplifiers using PPKTP and PPLN[J]. Optics Express, 2018, 26(5): 5531-5540.

[17] Burks S, Ortalo J, Chiummo A, et al. Vacuum squeezed light for atomic memories at the D2 cesium line[J]. Optics Express, 2009, 17(5): 3777-3781.

[18] Takei N, Lee N, Moriyama D, et al. Time-gated Einstein-Podolsky-Rosen correlation[J]. Physical Review A, 2006, 74(6): 060101.

[19] Eberle T, Händchen V, Schnabel R. Stable control of 10 dB two-mode squeezed vacuum states of light[J]. Optics Express, 2013, 21(9): 11546-11553.

[20] Pan J W, Bouwmeester D, Daniell M, et al. Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement[J]. Nature, 2000, 403(6769): 515-519.

[21] Bao X H, Qian Y, Yang J, et al. Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories[J]. Physical Review Letters, 2008, 101(19): 190501.

[22] Vahlbruch H, Mehmet M, Danzmann K, et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 2016, 117(11): 110801.

[23] Yang W H, Shi S P, Wang Y J, et al. Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations[J]. Optics Letters, 2017, 42(21): 4553-4556.

[24] Arnbak J, Jacobsen C S, Andrade R B, et al. Compact, low-threshold squeezed light source[J]. Optics Express, 2019, 27(26): 37877-37885.

[25] Meier T, Willke B, Danzmann K. Continuous-wave single-frequency 532 nm laser source emitting 130 W into the fundamental transversal mode[J]. Optics Letters, 2010, 35(22): 3742-3744.

[26] Chen H Z, Liu X, Wang X Q, et al. 30 W, sub-kHz frequency-locked laser at 532 nm[J]. Optics Express, 2018, 26(26): 33756-33763.

[27] 许夏飞, 鲁燕华, 张雷, 等. 外腔谐振倍频8.7 W连续单频绿光技术研究[J]. 中国激光, 2016, 43(11): 1101010.

    Xu X F, Lu Y H, Zhang L, et al. Technical study of 8.7 W continuous wave single frequency green laser based on extra-cavity frequency doubling[J]. Chinese Journal of Lasers, 2016, 43(11): 1101010.

[28] Boyd G D, Kleinman D. Parametric interaction of focused Gaussian light beams[J]. Journal of Applied Physics, 1968, 39(8): 3597-3639.

[29] 张文慧, 杨文海, 史少平, 等. 高压缩度压缩态光场制备中的模式匹配[J]. 中国激光, 2017, 44(11): 1112001.

    Zhang W H, Yang W H, Shi S P, et al. Mode matching in preparation of squeezed field with high compressibility[J]. Chinese Journal of Lasers, 2017, 44(11): 1112001.

[30] Li Z X, Tian Y H, Wang Y J, et al. Residual amplitude modulation and its mitigation in wedged electro-optic modulator[J]. Optics Express, 2019, 27(5): 7064-7071.

[31] 张宏宇, 王锦荣, 李庆回, 等. 高品质因子共振型光电探测器的实验研制[J]. 量子光学学报, 2019, 25(4): 456-462.

    Zhang H Y, Wang J R, Li Q H, et al. Experimental realization of high quality factor resonance detector[J]. Journal of Quantum Optics, 2019, 25(4): 456-462.

[32] 史少平, 杨文海, 郑耀辉, 等. 压缩态光场制备中的单频激光源噪声分析[J]. 中国激光, 2019, 46(7): 0701009.

    Shi S P, Yang W H, Zheng Y H, et al. Noise analysis of single-frequency laser source in preparation of squeezed-state light field[J]. Chinese Journal of Lasers, 2019, 46(7): 0701009.

[33] Kerdoncuff H, Christensen J B, Brasil T B, et al. Cavity-enhanced sum-frequency generation of blue light with near-unity conversion efficiency[J]. Optics Express, 2020, 28(3): 3975-3984.

田宇航, 王俊萍, 杨文海, 田龙, 王雅君, 郑耀辉. 集成量子压缩光源中MgO∶LiNbO3晶体倍频系统研究[J]. 中国激光, 2020, 47(11): 1108001. Tian Yuhang, Wang Junping, Yang Wenhai, Tian Long, Wang Yajun, Zheng Yaohui. Frequency Doubling System for Integrated Quantum Squeezed Light Source Based on MgO∶LiNbO3 Crystal[J]. Chinese Journal of Lasers, 2020, 47(11): 1108001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!