光学学报, 2014, 34 (4): 0414001, 网络出版: 2014-03-14   

基于数字微镜器件的多通道C波段可调谐光纤激光器 下载: 511次

Multi-Channel C-Band-Tunable Fiber Lasers Based on Digital-Micromirror-Device Processor
作者单位
1 中央民族大学理学院, 北京 100081
2 北京邮电大学信息光子学与光通信研究院, 北京 100876
3 大恒新纪元科技股份有限公司光电研究院, 北京 100085
摘要
可调谐光纤激光器可广泛应用于光纤通信、光纤传感、激光光谱、精密测量和激光加工等诸多领域。针对目前可调谐激光器在调谐性、灵活性、稳定性和多波长功率均衡性等方面的不足,提出一类新型的基于数字微镜器件(DMD)的多波长宽带可调谐光纤激光器。该激光器利用关键器件DMD作为波长调谐器,掺铒光纤作为激光增益介质,通过巧妙的光学设计,实现仅利用一块DMD芯片独立、灵活、稳定调谐多波长激光输出的目的。该激光器具有3个输出通道,各通道之间独立开关控制,每个通道均可实现波长在1530~1560 nm之间的连续可调谐输出,波长调谐精度0.055 nm/pixel,边模抑制比大于55 dB,激光输出功率最大值为10 mW,2 h内的中心波长漂移小于0.02 nm。
Abstract
Tunable fiber lasers are widely applied in fiber communication, optical fiber sensing, laser spectroscopy, precision measurement and laser processing etc. Considering of the deficiencies of current tunable lasers in tuning, flexibility, stability and multi-wavelength power equalization, a novel C-band tunable multi-channel fiber laser based on a digital micromirror device (DMD) is proposed. This tunable laser uses erbium-doped fibers as the laser gain medium and an opto-DMD processor as a tuner to dynamically select arbitrary lasing wavelength. The laser has three tunable output channels in 1530~1560 nm with resolution of 0.055 nm/pixel, and each channel can be controlled independently. The side mode suppression ratio of laser signals is greater than 55 dB. The maximum laser output power is about 10 mW and the fluctuation of the center wavelength within 2 h is below 0.02 nm.
参考文献

[1] C C Lee, S Chi. Single-longitudinal-mode operation of a grating-based fiber-ring laser using self-injection feedback [J]. Opt Lett, 2000, 25(24): 1774-1776.

[2] 曹莹, 顾铮. 级联长周期光纤光栅和Bragg光纤光栅的光学特性[J]. 中国激光, 2012, 39(4): 91-98.

    Cao Ying, Gu Zhengtian. Optical properties of cascaded long-period and fiber Bragg gratings [J]. Chinese J Lasers, 2012, 39(4):91-98.

[3] C H Yeh, F Y Shih, C H Wang, et al.. Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode [J]. Opt Express, 2008, 16(1): 435-439.

[4] W Yang, Y Liu, L F Xiao, et al.. Wavelength-tunable erbium-doped fiber ring laser employing an acousto-optic filter [J]. J Lightwave Technol, 2010, 28(1): 118-122.

[5] C S Kim, R M Sova, J U Kang. Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter [J]. Opt Commun, 2003, 218(4-6): 291-295.

[6] X Rejeaunier, P Mollier, J P Goedgebuer, et al.. Erbium-doped fiber laser tuning using two cascaded unbalanced Mach-Zehnder interferometers as intracavity filter: numerical analysis and experimental confirmation [J]. J Lightwave Technol, 2001, 19(6): 893-898.

[7] A W Al-Alimi, M H Al-Mansoori, A F Abas, et al.. A stabilized tunable dual wavelength erbium-doped fiber laser with equal output power [J]. Laser Physics, 2009, 19(8): 1850-1853.

[8] J J Tian, Y Yao, Y X Sun, et al.. Multiwavelength erbium-doped fiber laser employing nonlinear polarization rotation in a symmetric nonlinear optical loop mirror [J]. Opt Express, 2009, 17(17): 15160-15166.

[9] Z Q Luo, Z P Cai, J F Huang, et al.. Stable and spacing adjustable multiwavelength Raman fiber laser based on mix edcascaded phosphosilicate fiber Raman linear cavity [J]. Opt Lett, 2008, 33(14): 1602-1604.

[10] D M Liang, X F Xu, Y Lin, et al.. Multiwavelength fiber laser based on a high-birefringence fiber loop mirror [J]. Laser Physics Letters, 2007, 4(1): 57-60.

[11] R Hayashi, S Yamashita, T Saida. 16-wavelength 10-GHz actively mode-locked fiber laser with demultiplexed outputs anchored on the ITU-T grid [J]. IEEE Photon Technol Lett, 2003, 15(12): 1692-1694.

[12] Y G Han, C H Kim, S B Lee. Room-temperature multiwavelength erbium-doped fiber ring laser based on phase modulation of semiconductor optical amplifier with lasing-wavelength and spacing tunability [J]. Optical Engineering, 2007, 46(3): 210-212.

[13] Z Chen, S Ma, N K Dutta. Multiwavelength fiber ring laser based on a semiconductor and fiber gain medium [J]. Opt Express, 2009, 17(3): 1234-1239.

[14] G Bolognini, M A Soto, F D Pasquale. Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry-Pérot lasers [J]. IEEE Photon Technol Lett, 2009, 21(20): 1523-1525.

[15] X C Xu, Y Yao, X H Zhao, et al.. Multiple four-wave-mixing processes and its application to multiwavelength erbium-doped fiber lasers[J]. J Lightwave Technol, 2009, 27(14): 2876-2885.

[16] M H Al-Mansooriand, M A Mahdi. Multiwavelength L-band Brillouin-erbium comb fiber laser utilizing nonlinear amplifying loop mirror [J]. J Lightwave Technol, 2009, 27(22): 5038-5044.

[17] 姜暖, 李智忠, 杨华勇, 等. 保偏光纤双折射分析及全光纤拍长测试方法比对研究[J]. 光学学报, 2012, 32(7): 0706003.

    Jiang Nuan, Li Zhizhong, Yang Huayong, et al.. Birefringence analysis of polarization maintaining fiber and research on characteristic of all-fiber beat-length experimental systems [J]. Acta Optica Sinica, 2012, 32(7): 0706003.

[18] 陈笑, 颜玢玢, 宋菲君, 等. DMD光栅的衍射特性及其在可调谐激光中的应用[J]. 光学学报, 2012, 32(7): 0705003.

    Chen Xiao, Yan Binbin, Song Feijun, et al.. Diffractive properties of DMD gratings and its new application in tunable fiber lasers [J]. Acta Optica Sinica, 2012, 32(7): 0705003.

[19] X Chen, Y Q Wang, K Z Huang, et al.. Tunable polarization-maintaining single-mode fiber laser based on a MEMS processor [C]. Quantum Electronics and Laser Science Conference, 2012, JW2A.59.

艾琪, 陈笑, 田淼, 颜玢玢, 宋菲君, 陈根祥, 桑新柱, 王义全. 基于数字微镜器件的多通道C波段可调谐光纤激光器[J]. 光学学报, 2014, 34(4): 0414001. Ai Qi, Chen Xiao, Tian Miao, Yan Binbin, Song Feijun, Chen Genxiang, Sang Xinzhu, Wang Yiquan. Multi-Channel C-Band-Tunable Fiber Lasers Based on Digital-Micromirror-Device Processor[J]. Acta Optica Sinica, 2014, 34(4): 0414001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!