激光与光电子学进展, 2020, 57 (22): 220001, 网络出版: 2020-11-10   

拉曼光谱技术在肿瘤诊断上的应用研究进展 下载: 3037次封面文章

Research Progress on Application of Raman Spectroscopy in Tumor Diagnosis
作者单位
清华大学机械工程系摩擦学国家重点实验室, 北京 100084
引用该论文

祁亚峰, 刘宇宏, 刘大猛. 拉曼光谱技术在肿瘤诊断上的应用研究进展[J]. 激光与光电子学进展, 2020, 57(22): 220001.

Qi Yafeng, Liu Yuhong, Liu Dameng. Research Progress on Application of Raman Spectroscopy in Tumor Diagnosis[J]. Laser & Optoelectronics Progress, 2020, 57(22): 220001.

参考文献

[1] 曹毛毛, 陈万青. 中国恶性肿瘤流行情况及防控现状[J]. 中国肿瘤临床, 2019, 46(3): 145-149.

    Cao M M, Chen W Q. Epidemiology of cancer in China and the current status of prevention and control[J]. Chinese Journal of Clinical Oncology, 2019, 46(3): 145-149.

[2] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA, 2018, 68(6): 394-424.

[3] Chen W Q, Zheng R S, Baade P D, et al. Cancer statistics in China, 2015[J]. CA, 2016, 66(2): 115-132.

[4] Huang Q, Ouyang X N. Predictive biochemical-markers for the development of brain metastases from lung cancer: clinical evidence and future directions[J]. Cancer Epidemiology, 2013, 37(5): 703-707.

[5] Inamura K, Ishikawa Y. MicroRNA in lung cancer: novel biomarkers and potential tools for treatment[J]. Journal of Clinical Medicine, 2016, 5(3): 36.

[6] Rice S L, Friedman K P. Clinical PET-MR imaging in breast cancer and lung cancer[J]. PET Clinics, 2016, 11(4): 387-402.

[7] Rebouças Filho P P, Cortez P C, et al. Novel and powerful 3D adaptive crisp active contour method applied in the segmentation of CT lung images[J]. Medical Image Analysis, 2017, 35: 503-516.

[8] Vansteenkiste J, Fischer B M, Dooms C, et al. Positron-emission tomography in prognostic and therapeutic assessment of lung cancer: systematic review[J]. The Lancet Oncology, 2004, 5(9): 531-540.

[9] Lian C F, Ruan S, Denoeux T, et al. Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction[J]. Medical Image Analysis, 2016, 32: 257-268.

[10] Gal A A. In search of the origins of modern surgical pathology[J]. Advances in Anatomic Pathology, 2001, 8(1): 1-13.

[11] Gutmann E J. Pathologists and patients: can we talk?[J]. Modern Pathology, 2003, 16(5): 515-518.

[12] Lechago J. The frozen section: pathology in the trenches[J]. Archives of Pathology & Laboratory Medicine, 2005, 129(12): 1529-1531.

[13] Raman C V, Krishnan K S. A new type of secondary radiation[J]. Nature, 1928, 121(3048): 501-502.

[14] Kneipp K, Kneipp H, Itzkan I, et al. Ultrasensitive chemical analysis by Raman spectroscopy[J]. Chemical Reviews, 1999, 99(10): 2957-2975.

[15] Movasaghi Z, Rehman S, Rehman I U. Raman spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 2007, 42(5): 493-541.

[16] Zhao L F, Mu X J. Visualization of vibrational-resolution charge transfer enhanced resonance Raman scattering spectroscopy[J]. Spectrochimica Acta Part A, 2020, 229: 117945.

[17] Wade J, Pugh H, Nightingale J, et al. Colour in bivalve shells: using resonance Raman spectroscopy to compare pigments at different phylogenetic levels[J]. Journal of Raman Spectroscopy, 2019, 50(10): 1527-1536.

[18] Liu S L, Ma H, Zhu J Y, et al. Ferrous cytochrome c-nitric oxide oxidation for quantification of protein S-nitrosylation probed by resonance Raman spectroscopy[J]. Sensors and Actuators B, 2020, 308: 127706.

[19] Buhrke D, Hildebrandt P. Probing structure and reaction dynamics of proteins using time-resolved resonance Raman spectroscopy[J]. Chemical Reviews, 2020, 120(7): 3577-3630.

[20] Browne WR. Resonance Raman spectroscopy and its application in bioinorganic chemistry[M] //Practical approaches to biological inorganic chemistry. Amsterdam: Elsevier, 2020: 275- 324.

[21] Jeanmaire D L, Vanduyne R P. Surface Raman spectroelectrochemistry Part 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode[J]. Journal of Electroanalytical Chemistry, 1977, 84(1): 1-20.

[22] le Ru E C, Meyer M, Etchegoin P G. Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique[J]. The Journal of Physical Chemistry B, 2006, 110(4): 1944-1948.

[23] Li Z F, Li C, Lin D, et al. Surface-enhanced Raman spectroscopy for differentiation between benign and malignant thyroid tissues[J]. Laser Physics Letters, 2014, 11(4): 045602.

[24] Falamaş A, Rotaru H, Hedeşiu M. Surface-enhanced Raman spectroscopy (SERS) investigations of saliva for oral cancer diagnosis[J]. Lasers in Medical Science, 2020, 35(6): 1393-1401.

[25] Cialla-May D, Zheng X, Weber K, et al. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics[J]. Chemical Society Reviews, 2017, 46(13): 3945-3961.

[26] Talley C E, Jusinski L, Hollars C W, et al. Intracellular pH sensors based on surface-enhanced Raman scattering[J]. Analytical Chemistry, 2004, 76(23): 7064-7068.

[27] Ru E C L, Blackie E, Meyer M, et al. Surface enhanced Raman scattering enhancement factors: a comprehensive study[J]. Journal of Physical Chemistry C, 2007, 111(37): 13794-13803.

[28] Wang X, Huang S C, Huang T X, et al. Tip-enhanced Raman spectroscopy for surfaces and interfaces[J]. Chemical Society Reviews, 2017, 46(13): 4020-4041.

[29] Sonntag M D, Pozzi E A, Jiang N, et al. Recent advances in tip-enhanced Raman spectroscopy[J]. The Journal of Physical Chemistry Letters, 2014, 5(18): 3125-3130.

[30] Zhang R, Zhang Y, Dong Z C, et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering[J]. Nature, 2013, 498(7452): 82-86.

[31] Chen C, Hayazawa N, Kawata S. A 1.7nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient[J]. Nature Communications, 2014, 5(1): 3312.

[32] Kumar N, Weckhuysen B M, Wain A J, et al. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy[J]. Nature Protocols, 2019, 14(4): 1169-1193.

[33] Chen X, Liu P, Hu Z, et al. High-resolution tip-enhanced Raman scattering probes sub-molecular density changes[J]. Nature Communications, 2019, 10(1): 2567.

[34] Zong C, Premasiri R, Lin H, et al. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity[J]. Nature Communications, 2019, 10(1): 5318.

[35] Mittal R, Balu M, Krasieva T, et al. Evaluation of stimulated Raman scattering microscopy for identifying squamous cell carcinoma in human skin[J]. Lasers in Surgery and Medicine, 2013, 45(8): 496-502.

[36] Prince R C, Frontiera R R, Potma E O. Stimulated Raman scattering: from bulk to nano[J]. Chemical Reviews, 2017, 117(7): 5070-5094.

[37] Yang W, Li A, Suo Y, et al. Simultaneous two-color stimulated Raman scattering microscopy by adding a fiber amplifier to a 2 ps OPO-based SRS microscope[J]. Optics Letters, 2017, 42(3): 523-526.

[38] Ozeki Y, Kitagawa Y, Sumimura K, et al. Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses[J]. Optics Express, 2010, 18(13): 13708-13719.

[39] RanjanR, IndolfiM, Ferrara MA, et al. Implementation of a nonlinear microscope based on stimulated Raman scattering[J]. Journal of Visualized Experiments, 2019( 149): e59614.

[40] Krafft C, Schie I W, Meyer T, et al. Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications[J]. Chemical Society Reviews, 2016, 45(7): 1819-1849.

[41] Gawinkowski S, Pszona M, Gorski A, et al. Single molecule Raman spectra of porphycene isotopologues[J]. Nanoscale, 2016, 8(6): 3337-3349.

[42] Liu P C, Chen X, Ye H P, et al. Resolving molecular structures with high-resolution tip-enhanced Raman scattering images[J]. ACS Nano, 2019, 13(8): 9342-9351.

[43] Laptenok S P, Rajamanickam V P, Genchi L C, et al. Fingerprint-to-CH stretch continuously tunable high spectral resolution stimulated Raman scattering microscope[J]. Journal of Biophotonics, 2019, 12(9): e201900028.

[44] BattenT, Milikofu O. Characterisingstrain/stress and defects in SiC wafers using Raman imaging[J]. Materials Science Forum, 2015, 821/822/823: 229- 232.

[45] Motoyama M, Ando M, Sasaki K, et al. Simultaneous imaging of fat crystallinity and crystal polymorphic types by Raman microspectroscopy[J]. Food Chemistry, 2016, 196: 411-417.

[46] Wood J J, Kendall C, Hutchings J, et al. Evaluation of a confocal Raman probe for pathological diagnosis during colonoscopy[J]. Colorectal Disease, 2014, 16(9): 732-738.

[47] JermynM, MokK, MercierJ, et al., 2015, 7(274): 274ra19.

[48] Bergholt M S, Lin K, Wang J F, et al. Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy enhances real-time in vivo diagnosis of adenomatous polyps during colonoscopy[J]. Journal of Biophotonics, 2016, 9(4): 333-342.

[49] Garai E, Sensarn S, Zavaleta C L, et al. A real-time clinical endoscopic system for intraluminal, multiplexed imaging of surface-enhanced Raman scattering nanoparticles[J]. PLoS One, 2015, 10(4): e0123185.

[50] Wang Y W, Kang S, Khan A, et al. In vivo multiplexed molecular imaging of esophageal cancer via spectral endoscopy of topically applied SERS nanoparticles[J]. Biomedical Optics Express, 2015, 6(10): 3714-3723.

[51] Tiberj A, Camara N, Godignon P, et al. Micro-Raman and micro-transmission imaging of epitaxial graphene grown on the Si and C faces of 6H-SiC[J]. Nanoscale Research Letters, 2011, 6(1): 478.

[52] Suda J, Suwa S, Mizuno S, et al. Micro-Raman imaging on 4H-SiC in contact with the electrode at room temperature[J]. Spectrochimica Acta Part A, 2018, 193: 393-396.

[53] Wu J P. Linear quantification calibration of crystallinity at subpercent and its evaluation based on spectral and spatial information inherited in Raman chemical images[J]. Journal of Raman Spectroscopy, 2014, 45(8): 686-695.

[54] Wang P. Anderson E J D, Muller E A, et al. Hyper-spectral Raman imaging correlating chemical substitution and crystallinity in biogenic hydroxyapatite: dentin and enamel in normal and hypoplastic human teeth[J]. Journal of Raman Spectroscopy, 2018, 49(9): 1559-1567.

[55] Zhang Y J, Lai X P, Zeng Q Y, et al. Classifying low-grade and high-grade bladder cancer using label-free serum surface-enhanced Raman spectroscopy and support vector machine[J]. Laser Physics, 2018, 28(3): 035603.

[56] Chen S, Zhu S S, Cui X Y, et al. Identifying non-muscle-invasive and muscle-invasive bladder cancer based on blood serum surface-enhanced Raman spectroscopy[J]. Biomedical Optics Express, 2019, 10(7): 3533-3544.

[57] Chen H, Li X, Broderick N, et al. Identification and characterization of bladder cancer by low-resolution fiber-optic Raman spectroscopy[J]. Journal of Biophotonics, 2018, 11(9): e201800016.

[58] Chen H, Li X. Broderick N G R, et al. Low-resolution fiber-optic Raman spectroscopy for bladder cancer diagnosis: a comparison study of varying laser power, integration time, and classification methods[J]. Journal of Raman Spectroscopy, 2020, 51(2): 323-334.

[59] Galli R, Meinhardt M, Koch E, et al. Rapid label-free analysis of brain tumor biopsies by near infrared Raman and fluorescence spectroscopy: a study of 209 patients[J]. Frontiers in Oncology, 2019, 9: 1165.

[60] Kowalska A A, Berus S, Szleszkowski Ł, et al. Brain tumour homogenates analysed by surface-enhanced Raman spectroscopy: discrimination among healthy and cancer cells[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 231: 117769.

[61] Lemoine E, Dallaire F, Yadav R, et al. Feature engineering applied to intraoperative in vivo Raman spectroscopy sheds light on molecular processes in brain cancer: a retrospective study of 65 patients[J]. Analyst, 2019, 144(22): 6517-6532.

[62] Krishnamoorthy C, Prakasarao A, Srinivasan V, et al. Monitoring of breast cancer patients under pre and post treated conditions using Raman spectroscopic analysis of blood plasma[J]. Vibrational Spectroscopy, 2019, 105: 102982.

[63] Nargis H F, Nawaz H, Ditta A, et al. Raman spectroscopy of blood plasma samples from breast cancer patients at different stages[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 222: 117210.

[64] Lin D, Wang Y Y, Wang T Y, et al. Metabolite profiling of human blood by surface-enhanced Raman spectroscopy for surgery assessment and tumor screening in breast cancer[J]. Analytical and Bioanalytical Chemistry, 2020, 412(7): 1611-1618.

[65] González-Solís J L. Discrimination of different cancer types clustering Raman spectra by a super paramagnetic stochastic network approach[J]. PLoS One, 2019, 14(3): e0213621.

[66] Zhang C, Winnard P T, Dasari S, et al. Label-free Raman spectroscopy provides early determination and precise localization of breast cancer-colonized bone alterations[J]. Chemical Science, 2018, 9(3): 743-753.

[67] Moisoiu V, Socaciu A, Stefancu A, et al. Breast cancer diagnosis by surface-enhanced Raman scattering (SERS) of urine[J]. Applied Sciences, 2019, 9(4): 806.

[68] Zhang P, Wang L M, Fang Y P, et al. Label-free exosomal detection and classification in rapid discriminating different cancer types based on specific Raman phenotypes and multivariate statistical analysis[J]. Molecules, 2019, 24(16): 2947.

[69] Fallahzadeh O, Dehghani-Bidgoli Z, Assarian M. Raman spectral feature selection using ant colony optimization for breast cancer diagnosis[J]. Lasers in Medical Science, 2018, 33(8): 1799-1806.

[70] Lyng F M, Traynor D. Nguyen T N Q, et al. Discrimination of breast cancer from benign tumours using Raman spectroscopy[J]. PLoS One, 2019, 14(2): e0212376.

[71] Zúñiga W C, Jones V, Anderson S M, et al. Raman spectroscopy for rapid evaluation of surgical margins during breast cancer lumpectomy[J]. Scientific Reports, 2019, 9(1): 14639.

[72] Vanna R, Morasso C, Marcinnò B, et al. Raman spectroscopy reveals that biochemical composition of breast microcalcifications correlates with histopathologic features[J]. Cancer Research, 2020, 80(8): 1762-1772.

[73] Woolford L, Chen M Z, Dholakia K, et al. Towards automated cancer screening: label-free classification of fixed cell samples using wavelength modulated Raman spectroscopy[J]. Journal of Biophotonics, 2018, 11(4): e201700244.

[74] Hole A, Tyagi G, Sahu A, et al. Exploration of Raman exfoliated cytology for oral and cervical cancers[J]. Vibrational Spectroscopy, 2018, 98: 35-40.

[75] Traynor D, Duraipandian S, Bhatia R, et al. The potential of biobanked liquid based cytology samples for cervical cancer screening using Raman spectroscopy[J]. Journal of Biophotonics, 2019, 12(7): e201800377.

[76] Raja P, Aruna P, Koteeswaran D, et al. Characterization of blood plasma of normal and cervical cancer patients using NIR Raman spectroscopy[J]. Vibrational Spectroscopy, 2019, 102: 1-7.

[77] Li X Z, Yang T Y, Li C S, et al. Surface enhanced Raman spectroscopy (SERS) for the multiplex detection of BRAF, KRAS, and PIK3CA mutations in plasma of colorectal cancer patients[J]. Theranostics, 2018, 8(6): 1678-1689.

[78] Jenkins C A, Jenkins R A, Pryse M M, et al. A high-throughput serum Raman spectroscopy platform and methodology for colorectal cancer diagnostics[J]. Analyst, 2018, 143(24): 6014-6024.

[79] Gala de Pablo J, Armistead F J, Peyman S A, et al. Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2018, 49(8): 1323-1332.

[80] Dai W Y, Lee S, Hsu Y C. Discrimination between oral cancer and healthy cells based on the adenine signature detected by using Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2018, 49(2): 336-342.

[81] Chen Y S, Cheng S L, Zhang A, et al. Salivary analysis based on surface enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons[J]. Journal of Biomedical Nanotechnology, 2018, 14(10): 1773-1784.

[82] Bahreini M, Hosseinzadegan A, Rashidi A, et al. A Raman-based serum constituents’analysis for gastric cancer diagnosis: in vitro study[J]. Talanta, 2019, 204: 826-832.

[83] Guo L, Li Y P, Huang F R, et al. Identification and analysis of serum samples by surface-enhanced Raman spectroscopy combined with characteristic ratio method and PCA for gastric cancer detection[J]. Journal of Innovative Optical Health Sciences, 2019, 12(2): 1950003.

[84] Avram L, Iancu S D, Stefancu A, et al. SERS-based liquid biopsy of gastrointestinal tumors using a portable Raman device operating in a clinical environment[J]. Journal of Clinical Medicine, 2020, 9(1): 212.

[85] Lai H C, Wan Z D, Wu Q, et al. Surface-enhanced Raman spectroscopy for classification of laryngeal cancer and adjacent tissues[J]. Laser Physics, 2019, 29(10): 105601.

[86] Lin K C, Xu J S, Li L, et al. Label-free detection of liver cancer based on silver nanoparticles coated tissue surface-enhanced Raman spectroscopy[J]. Laser Physics Letters, 2018, 15(12): 125601.

[87] Zhang K, Hao C Y, Man B Y, et al. Diagnosis of liver cancer based on tissue slice surface enhanced Raman spectroscopy and multivariate analysis[J]. Vibrational Spectroscopy, 2018, 98: 82-87.

[88] Yu Y, Lin Y T, Xu C X, et al. Label-free detection of nasopharyngeal and liver cancer using surface-enhanced Raman spectroscopy and partial lease squares combined with support vector machine[J]. Biomedical Optics Express, 2018, 9(12): 6053-6066.

[89] Zhu W F, Cheng L X, Li M, et al. Frequency shift Raman-based sensing of serum MicroRNAs for early diagnosis and discrimination of primary liver cancers[J]. Analytical Chemistry, 2018, 90(17): 10144-10151.

[90] Cao X W, Wang Z Y, Bi L Y, et al. Label-free detection of human serum using surface-enhanced Raman spectroscopy based on highly branched gold nanoparticle substrates for discrimination of non-small cell lung cancer[J]. Journal of Chemistry, 2018, 2018: 1-13.

[91] Wang H, Zhang S H, Wan L M, et al. Screening and staging for non-small cell lung cancer by serum laser Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 201: 34-38.

[92] Wolny-Rokicka E, Tukiendorf A, Wydmański J, et al. The potential of the quick detection of selectins using Raman spectroscopy to discriminate lung cancer patients from healthy subjects[J]. Journal of Spectroscopy, 2018, 2018: 7843208.

[93] Qian K, Wang Y, Hua L, et al. New method of lung cancer detection by saliva test using surface-enhanced Raman spectroscopy[J]. Thoracic Cancer, 2018, 9(11): 1556-1561.

[94] Qiao X Z, Su B S, Liu C, et al. Selective surface enhanced Raman scattering for quantitative detection of lung cancer biomarkers in superparticle@MOF structure[J]. Advanced Materials, 2018, 30(5): 1702275.

[95] Paidi S K, Diaz P M, Dadgar S, et al. Label-free Raman spectroscopy reveals signatures of radiation resistance in the tumor microenvironment[J]. Cancer Research, 2019, 79(8): 2054-2064.

[96] Zhang Y J, Zeng Q, Li L, et al. Characterization and identification of lung cancer cells from blood cells with label-free surface-enhanced Raman scattering[J]. Laser Physics, 2019, 29(4): 045602.

[97] Sinica A, Brožáková K. Br u˙ha T, et al. Raman spectroscopic discrimination of normal and cancerous lung tissues[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 219: 257-266.

[98] Song D L, Yu F, Chen S L, et al. Raman spectroscopy combined with multivariate analysis to study the biochemical mechanism of lung cancer microwave ablation[J]. Biomedical Optics Express, 2020, 11(2): 1061-1072.

[99] Khan S, Ullah R, Shahzad S, et al. Optical screening of nasopharyngeal cancer using Raman spectroscopy and support vector machine[J]. Optik, 2018, 157: 565-570.

[100] Wu Q, Qiu S F, Yu Y, et al. Assessment of the radiotherapy effect for nasopharyngeal cancer using plasma surface-enhanced Raman spectroscopy technology[J]. Biomedical Optics Express, 2018, 9(7): 3413-3423.

[101] Lin H, Zhou J, Wu Q, et al. Human blood test based on surface-enhanced Raman spectroscopy technology using different excitation light for nasopharyngeal cancer detection[J]. Iet Nanobiotechnology, 2019, 13(9): 942-945.

[102] Xue L L, Yan B, Li Y, et al. Surface-enhanced Raman spectroscopy of blood serum based on gold nanoparticles for tumor stages detection and histologic grades classification of oral squamous cell carcinoma[J]. International Journal of Nanomedicine, 2018, 13: 4977-4986.

[103] Ghosh A, Raha S, Dey S, et al. Chemometric analysis of integrated FTIR and Raman spectra obtained by non-invasive exfoliative cytology for the screening of oral cancer[J]. Analyst, 2019, 144(4): 1309-1325.

[104] Jeng M, Sharma M, Sharma L, et al. Raman spectroscopy analysis for optical diagnosis of oral cancer detection[J]. Journal of Clinical Medicine, 2019, 8(9): 1313.

[105] Paraskevaidi M, Ashton K M, Stringfellow H F, et al. Raman spectroscopic techniques to detect ovarian cancer biomarkers in blood plasma[J]. Talanta, 2018, 189: 281-288.

[106] Morais C L M, Martin-Hirsch P L, Martin F. A three-dimensional principal component analysis approach for exploratory analysis of hyperspectral data: identification of ovarian cancer samples based on Raman microspectroscopy imaging of blood plasma[J]. Analyst, 2019, 144(7): 2312-2319.

[107] Zermeño-Nava J D J, Martínez-Martínez M U, Rámirez-De-ávila A L, et al. Determination of sialic acid in saliva by means of surface-enhanced Raman spectroscopy as a marker in adnexal mass patients: ovarian cancer vs benign cases[J]. Journal of Ovarian Research, 2018, 11(1): 61.

[108] Viswanathan K, Soumya K, Gurusankar K, et al. Raman spectroscopic analysis of ovarian cancer tissues and normal ovarian tissues[J]. Laser Physics, 2019, 29(4): 045701.

[109] Carmicheal J, Hayashi C, Huang X, et al. Label-free characterization of exosome via surface enhanced Raman spectroscopy for the early detection of pancreatic cancer[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2019, 16: 88-96.

[110] Aubertin K, Desroches J, Jermyn M, et al. Combining high wavenumber and fingerprint Raman spectroscopy for the detection of prostate cancer during radical prostatectomy[J]. Biomedical Optics Express, 2018, 9(9): 4294-4305.

[111] Aubertin K, Trinh V Q, Jermyn M, et al. Mesoscopic characterization of prostate cancer using Raman spectroscopy: potential for diagnostics and therapeutics[J]. BJU International, 2018, 122(2): 326-336.

[112] Magalhães F L. Machado A M C, Paulino E, et al. Raman spectroscopy with a 1064-nm wavelength laser as a potential molecular tool for prostate cancer diagnosis: a pilot study[J]. Journal of Biomedical Optics, 2018, 23(12): 121613.

[113] Lee W, Nanou A, Rikkert L, et al. Label-free prostate cancer detection by characterization of extracellular vesicles using Raman spectroscopy[J]. Analytical Chemistry, 2018, 90(19): 11290-11296.

[114] Correia N A. Batista L T A, Nascimento R J M, et al. Detection of prostate cancer by Raman spectroscopy: a multivariate study on patients with normal and altered PSA values[J]. Journal of Photochemistry and Photobiology B, 2020, 204: 111801.

[115] Qian HY, Shao XG, Zhu YJ, et al., 2020, 38(6): 601. e1-601. e9.

[116] Feng X, Moy A J. Nguyen H T M, et al. Raman biophysical markers in skin cancer diagnosiss[J]. Journal of Biomedical Optics, 2018, 23(5): 057002.

[117] Ferreira Lima A M, Daniel C R, Navarro R S, et al. Discrimination of non-melanoma skin cancer and keratosis from normal skin tissue in vivo and ex vivo by Raman spectroscopy[J]. Vibrational Spectroscopy, 2019, 100: 131-141.

[118] Garcia D V, Silveira L, et al. Analysis of Raman spectroscopy data with algorithms based on paraconsistent logic for characterization of skin cancer lesions[J]. Vibrational Spectroscopy, 2019, 103: 102929.

[119] Zhang X, Yu F, Li J, et al. Investigation on the cancer invasion and metastasis of skin squamous cell carcinoma by Raman spectroscopy[J]. Molecules, 2019, 24(11): 2059.

[120] O’Dea D, Bongiovanni M, Sykiotis G P, et al. Raman spectroscopy for the preoperative diagnosis of thyroid cancer and its subtypes: an in vitro proof-of-concept study[J]. Cytopathology, 2019, 30(1): 51-60.

[121] Liang X Z, Miao X C, Xiao W J, et al. Filter-membrane-based ultrafiltration coupled with surface-enhanced Raman spectroscopy for potential differentiation of benign and malignant thyroid tumors from blood plasma[J]. International Journal of Nanomedicine, 2020, 15: 2303-2314.

[122] Atkins C G, Buckley K, Blades M W, et al. Raman spectroscopy of blood and blood components[J]. Applied Spectroscopy, 2017, 71(5): 767-793.

[123] Perakis S, Speicher M R. Emerging concepts in liquid biopsies[J]. BMC Medicine, 2017, 15(1): 75.

[124] Siravegna G, Marsoni S, Siena S, et al. Integrating liquid biopsies into the management of cancer[J]. Nature Reviews Clinical Oncology, 2017, 14(9): 531-548.

[125] Xu X B, Li H F, Hasan D H, et al. Near-field enhanced plasmonic-magnetic bifunctional nanotubes for single cell bioanalysis[J]. Advanced Functional Materials, 2013, 23(35): 4332-4338.

[126] Nam W, Ren X. Tali S A S, et al. Refractive-index-insensitive nanolaminated SERS substrates for label-free Raman profiling and classification of living cancer cells[J]. Nano Letters, 2019, 19(10): 7273-7281.

[127] Wang J, Liang D W, Feng J, et al. Multicolor cocktail for breast cancer multiplex phenotype targeting and diagnosis using bioorthogonal surface-enhanced Raman scattering nanoprobes[J]. Analytical Chemistry, 2019, 91(17): 11045-11054.

[128] Lee J U, Kim W H, Lee H S, et al. Quantitative and specific detection of exosomal miRNAs for accurate diagnosis of breast cancer using a surface-enhanced Raman scattering sensor based on plasmonic head-flocked gold nanopillars[J]. Small, 2019, 15(17): 1804968.

[129] Kim S, Kim T G, Lee S H, et al. Label-free surface-enhanced Raman spectroscopy biosensor for on-site breast cancer detection using human tears[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 7897-7904.

[130] Bai X R, Wang L H, Ren J Q, et al. Accurate clinical diagnosis of liver cancer based on simultaneous detection of ternary specific antigens by magnetic induced mixing surface-enhanced Raman scattering emissions[J]. Analytical Chemistry, 2019, 91(4): 2955-2963.

[131] Tang R, Hu R, Jiang X H, et al. LHRH-targeting surface-enhanced Raman scattering tags for the rapid detection of circulating tumor cells[J]. Sensors and Actuators B, 2019, 284: 468-474.

[132] Lu D, Xia J, Deng Z, et al. Detection of squamous cell carcinoma antigen in cervical cancer by surface-enhanced Raman scattering-based immunoassay[J]. Analytical Methods, 2019, 11(21): 2809-2818.

[133] Xie M, Li F, Gu P L, et al. Gold nanoflower-based surface-enhanced Raman probes for pH mapping of tumor cell microenviroment[J]. Cell Proliferation, 2019, 52(4): e12618.

[134] Hong Y, Li Y Q, Huang L B, et al. Label-free diagnosis for colorectal cancer through coffee ring-assisted surface-enhanced Raman spectroscopy on blood serum[J]. Journal of Biophotonics, 2020, 13(4): e201960176.

[135] Teng Y J, Ren Z Y, Zhang Y C, et al. Determination of prostate cancer marker Zn 2+ with a highly selective surface-enhanced Raman scattering probe on liquid-liquid self-assembled Au nanoarrays[J]. Talanta, 2020, 209: 120569.

[136] Zhang X R, Liu C, Pei Y J, et al. Preparation of a novel Raman probe and its application in the detection of circulating tumor cells and exosomes[J]. ACS Applied Materials & Interfaces, 2019, 11(32): 28671-28680.

[137] Zhang W, Jiang L M, Diefenbach R J, et al. Enabling sensitive phenotypic profiling of cancer-derived small extracellular vesicles using surface-enhanced Raman spectroscopy nanotags[J]. ACS Sensors, 2020, 5(3): 764-771.

[138] Reokrungruang P, Chatnuntawech I, Dharakul T, et al. A simple paper-based surface enhanced Raman scattering (SERS) platform and magnetic separation for cancer screening[J]. Sensors and Actuators B, 2019, 285: 462-469.

[139] Li L H, Liao M L, Chen Y F, et al. Surface-enhanced Raman spectroscopy (SERS) nanoprobes for ratiometric detection of cancer cells[J]. Journal of Materials Chemistry B, 2019, 7(5): 815-822.

[140] Nguyen T D, Song M S, Ly N H, et al. Nanostars on nanopipette tips: a Raman probe for quantifying oxygen levels in hypoxic single cells and tumours[J]. Angewandte Chemie International Edition, 2019, 58(9): 2710-2714.

[141] AndreouC, OseledchykA, NicolsonF, et al. Surface-enhanced resonance Raman scattering nanoprobe ratiometry for detecting microscopic ovarian cancer via folate receptor targeting[J]. Journal of Visualized Experiments, 2019( 145): e58389.

[142] Niciński K, Krajczewski J, Kudelski A, et al. Detection of circulating tumor cells in blood by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) in microfluidic device[J]. Scientific Reports, 2019, 9(1): 9267.

[143] Králová Z O, Oriňak A, Oriňaková R, et al. Electrochemically deposited silver detection substrate for surface-enhanced Raman spectroscopy cancer diagnostics[J]. Journal of Biomedical Optics, 2018, 23(7): 075002.

[144] Zhang K, Liu X J, Man B Y, et al. Label-free and stable serum analysis based on Ag-NPs/PSi surface-enhanced Raman scattering for noninvasive lung cancer detection[J]. Biomedical Optics Express, 2018, 9(9): 4345-4358.

[145] Zhang K, Hao C Y, Huo Y Y, et al. Label-free diagnosis of lung cancer with tissue-slice surface-enhanced Raman spectroscopy and statistical analysis[J]. Lasers in Medical Science, 2019, 34(9): 1849-1855.

[146] Deng R, Yue J, Qu H X, et al. Glucose-bridged silver nanoparticle assemblies for highly sensitive molecular recognition of sialic acid on cancer cells via surface-enhanced Raman scattering spectroscopy[J]. Talanta, 2018, 179: 200-206.

[147] Chundayil Madathil G, Iyer S, Thankappan K, et al. A novel surface enhanced Raman catheter for rapid detection, classification, and grading of oral cancer[J]. Advanced Healthcare Materials, 2019, 8(13): 1801557.

[148] Koo K M, Wang J, Richards R S, et al. Design and clinical verification of surface-enhanced Raman spectroscopy diagnostic technology for individual cancer risk prediction[J]. ACS Nano, 2018, 12(8): 8362-8371.

[149] Yang L, Zhen S J, Li Y F, et al. Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker[J]. Nanoscale, 2018, 10(25): 11942-11947.

[150] Brozek-Pluska B, Kopec M, Surmacki J. Surface-enhanced Raman spectroscopy analysis of human breast cancer via silver nanoparticles: an examination of fabrication methods[J]. Journal of Spectroscopy, 2018, 2018: 4893274.

[151] Si Y, Xu L, Wang N, et al. Target microRNA-responsive DNA hydrogel-based surface-enhanced Raman scattering sensor arrays for microRNA-marked cancer screening[J]. Analytical Chemistry, 2020, 92(3): 2649-2655.

[152] Xiang Y, Yang H R, Guo X Y, et al. Surface enhanced Raman detection of the colon cancer biomarker cytidine by using magnetized nanoparticles of the type Fe3O4/Au/Ag[J]. Microchimica Acta, 2018, 185(3): 195.

[153] Cui X Y, Hu D Y, Wang C Y, et al. A surface-enhanced Raman scattering-based probe method for detecting chromogranin A in adrenal tumors[J]. Nanomedicine, 2020, 15(4): 397-407.

[154] Lin X L, Wang Y Y, Wang L N, et al. Interference-free and high precision biosensor based on surface enhanced Raman spectroscopy integrated with surface molecularly imprinted polymer technology for tumor biomarker detection in human blood[J]. Biosensors & Bioelectronics, 2019, 143: 111599.

[155] Dharmalingam P, Venkatakrishnan K, Tan B. Probing cancer metastasis at a single-cell level with a Raman-functionalized anionic probe[J]. Nano Letters, 2020, 20(2): 1054-1066.

[156] Keshavarz M, Kassanos P, Tan B, et al. Metal-oxide surface-enhanced Raman biosensor template towards point-of-care EGFR detection and cancer diagnostics[J]. Nanoscale Horizons, 2020, 5(2): 294-307.

[157] Rüger J, et al. Combined Raman and AFM detection of changes in HeLa cervical cancer cells induced by CeO2 nanoparticles-molecular and morphological perspectives[J]. The Analyst, 2020, 145(11): 3983-3995.

[158] Hollon T C, Pandian B, Adapa A R, et al. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks[J]. Nature Medicine, 2020, 26(1): 52-58.

[159] Aljakouch K, Hilal Z, Daho I, et al. Fast and noninvasive diagnosis of cervical cancer by coherent anti-stokes Raman scattering[J]. Analytical Chemistry, 2019, 91(21): 13900-13906.

[160] Zhang L L, Wu Y Z, Zheng B, et al. Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy[J]. Theranostics, 2019, 9(9): 2541-2554.

[161] Hollon T C, Lewis S, Pandian B, et al. Rapid intraoperative diagnosis of pediatric brain tumors using stimulated Raman histology[J]. Cancer Research, 2018, 78(1): 278-289.

[162] Shin KS, Francis AT, Hill AH, et al. Intraoperative assessment of skull base tumors using stimulated Raman scattering microscopy[J]. Scientific Reports, 9( 1): 20392.

[163] SarriB, CanongeR, AudierX, et al. Fast stimulated Raman and second harmonic generation imaging for intraoperative gastro-intestinal cancer detection[J]. Scientific Reports, 9( 1): 10052.

[164] Yan S, Cui S S, Ke K, et al. Hyperspectral stimulated Raman scattering microscopy unravels aberrant accumulation of saturated fat in human liver cancer[J]. Analytical Chemistry, 2018, 90(11): 6362-6366.

[165] Huang K C, Li J J, Zhang C, et al. Multiplex stimulated Raman scattering imaging cytometry reveals lipid-rich protrusions in cancer cells under stress condition[J]. iScience, 2020, 23(3): 100953.

[166] Jin Q Q, Fan X L, Chen C M, et al. Multicolor Raman beads for multiplexed tumor cell and tissue imaging and in vivo tumor spectral detection[J]. Analytical Chemistry, 2019, 91(6): 3784-3789.

[167] Gong L, Zheng W, Ma Y, et al. Higher-order coherent anti-Stokes Raman scattering microscopy realizes label-free super-resolution vibrational imaging[J]. Nature Photonics, 2020, 14(2): 115-122.

[168] 李姿霖, 李少伟, 张思鹭, 等. 相干拉曼散射显微技术及其在生物医学领域的应用[J]. 中国激光, 2020, 47(2): 0207005.

    Li Z L, Li S W, Zhang S L, et al. Coherent Raman scattering microscopy technique and its biomedical applications[J]. Chinese Journal of Lasers, 2020, 47(2): 0207005.

[169] 张博涵, 郭莉, 姚冽, 等. 受激拉曼散射显微技术用于快速无标记病理成像[J]. 中国激光, 2020, 47(2): 0207018.

    Zhang B H, Guo L, Yao L, et al. Rapid histological imaging using stimulated Raman scattering microscopy[J]. Chinese Journal of Lasers, 2020, 47(2): 0207018.

[170] Davis R M, Kiss B, Trivedi D R, et al. Surface-enhanced Raman scattering nanoparticles for multiplexed imaging of bladder cancer tissue permeability and molecular phenotype[J]. ACS Nano, 2018, 12(10): 9669-9679.

[171] Zou Y X, Huang S Q, Liao Y X, et al. Isotopic graphene-isolated-Au-nanocrystals with cellular Raman-silent signals for cancer cell pattern recognition[J]. Chemical Science, 2018, 9(10): 2842-2849.

[172] Wu X X, Peng Y, Duan X M, et al. Homologous gold nanoparticles and nanoclusters composites with enhanced surface Raman scattering and metal fluorescence for cancer imaging[J]. Nanomaterials, 2018, 8(10): 819.

[173] Yarbakht M, Nikkhah M, Moshaii A, et al. Simultaneous isolation and detection of single breast cancer cells using surface-enhanced Raman spectroscopy[J]. Talanta, 2018, 186: 44-52.

[174] Liang D W, Jin Q Q, Yan N, et al. SERS nanoprobes in biologically Raman silent region for tumor cell imaging and in vivo tumor spectral detection in mice[J]. Advanced Biosystems, 2018, 2(12): 1800100.

[175] Zhang J, Liang L J, Guan X, et al. In situ, accurate, surface-enhanced Raman scattering detection of cancer cell nucleus with synchronous location by an alkyne-labeled biomolecular probe[J]. Analytical and Bioanalytical Chemistry, 2018, 410(2): 585-594.

[176] Zhang T, Qin Y T, Tan T W, et al. Targeted live cell Raman imaging and visualization of cancer biomarkers with thermal-stimuli responsive imprinted nanoprobes[J]. Particle & Particle Systems Characterization, 2018, 35(12): 1800390.

[177] Chang J, Zhang A, Huang Z C, et al. Monodisperse Au@Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells[J]. Talanta, 2019, 198: 45-54.

[178] Shi B W, Zhang B Y, Zhang Y Q, et al. Multifunctional gap-enhanced Raman tags for preoperative and intraoperative cancer imaging[J]. Acta Biomaterialia, 2020, 104: 210-220.

[179] Martinez Pancorbo P, Thummavichai K, Clark L, et al. Novel Au-SiO2-WO3 core-shell composite nanoparticles for surface-enhanced Raman spectroscopy with potential application in cancer cell imaging[J]. Advanced Functional Materials, 2019, 29(46): 1903549.

[180] Zhang Y Q, Liu Z Y, Thackray B D, et al. Intraoperative Raman-guided chemo-photothermal synergistic therapy of advanced disseminated ovarian cancers[J]. Small, 2018, 14(31): 1801022.

[181] Neuschmelting V, Harmsen S, Beziere N, et al. Dual-modality surface-enhanced resonance Raman scattering and multispectral optoacoustic tomography nanoparticle approach for brain tumor delineation[J]. Small, 2018, 14(23): 1800740.

[182] Wang J P, Sun J Y, Wang Y H, et al. Gold nanoframeworks with mesopores for Raman-photoacoustic imaging and photo-chemo tumor therapy in the second near-infrared biowindow[J]. Advanced Functional Materials, 2020, 30(9): 1908825.

[183] PalS, RayA, AndreouC, et al. DNA-enabled rational design of fluorescence-Raman bimodal nanoprobes for cancer imaging and therapy[J]. Nature Communications, 10( 1): 1926.

[184] Nicolson F, Andreiuk B, Andreou C, et al. Non-invasive in vivo imaging of cancer using surface-enhanced spatially offset Raman spectroscopy (SESORS)[J]. Theranostics, 2019, 9(20): 5899-5913.

[185] Nicolson F, Jamieson L E, Mabbott S, et al. Through tissue imaging of a live breast cancer tumour model using handheld surface enhanced spatially offset resonance Raman spectroscopy (SESORRS)[J]. Chemical Science, 2018, 9(15): 3788-3792.

[186] Song D L, Chen T M, Wang S, et al. Study on the biochemical mechanisms of the micro-wave ablation treatment of lung cancer by ex vivo confocal Raman microspectral imaging[J]. Analyst, 2020, 145(2): 626-635.

[187] Sitarz K, Czamara K, Bialecka J, et al. HPV infection significantly accelerates glycogen metabolism in cervical cells with large nuclei: Raman microscopic study with subcellular resolution[J]. International Journal of Molecular Sciences, 2020, 21(8): 2667.

[188] Brozek-Pluska B, Miazek K, Musial J, et al. Label-free diagnostics and cancer surgery Raman spectra guidance for the human colon at different excitation wavelengths[J]. RSC Advances, 2019, 9(69): 40445-40454.

[189] Morais C L M, Lilo T, Ashton K M, et al. Determination of meningioma brain tumour grades using Raman microspectroscopy imaging[J]. The Analyst, 2019, 144(23): 7024-7031.

[190] Feng X, Fox M C, Reichenberg J S, et al. Superpixel Raman spectroscopy for rapid skin cancer margin assessment[J]. Journal of Biophotonics, 2020, 13(2): e201960109.

[191] Feng X, Fox M C, Reichenberg J S, et al. Biophysical basis of skin cancer margin assessment using Raman spectroscopy[J]. Biomedical Optics Express, 2019, 10(1): 104-118.

[192] Abramczyk H, Imiela A, Brozek-Pluska B, et al. Aberrant protein phosphorylation in cancer by using Raman biomarkers[J]. Cancers, 2019, 11(12): 2017.

[193] Placzek F, Cordero Bautista E, Kretschmer S, et al. Morpho-molecular ex vivo detection and grading of non-muscle-invasive bladder cancer using forward imaging probe based multimodal optical coherence tomography and Raman spectroscopy[J]. The Analyst, 2020, 145(4): 1445-1456.

[194] Sato S, Sekine R, Kagoshima H, et al. All-in-one Raman spectroscopy approach to diagnosis of colorectal cancer: analysis of spectra in the fingerprint regions[J]. Journal of the Anus, Rectum and Colon, 2019, 3(2): 84-90.

[195] Bury D. Morais C L M, Ashton K M, et al. Ex vivo Raman spectrochemical analysis using a handheld probe demonstrates high predictive capability of brain tumour status[J]. Biosensors, 2019, 9(2): 49.

[196] Liao C, Wang P, Huang C Y, et al. In vivo and in situ spectroscopic imaging by a handheld stimulated Raman scattering microscope[J]. ACS Photonics, 2018, 5(3): 947-954.

[197] Nicolson F, Jamieson L E, Mabbott S, et al. Multiplex imaging of live breast cancer tumour models through tissue using handheld surface enhanced spatially offset resonance Raman spectroscopy (SESORRS)[J]. Chemical Communications, 2018, 54(61): 8530-8533.

[198] Dai J H, He X, Li Z Y, et al. Fiber-optic Raman spectrum sensor for fast diagnosis of esophageal cancer[J]. Photonic Sensors, 2019, 9(1): 53-59.

[199] Varkentin A, Mazurenka M, Blumenröther E, et al. Trimodal system for in vivo skin cancer screening with combined optical coherence tomography-Raman and colocalized optoacoustic measurements[J]. Journal of Biophotonics, 2018, 11(6): e201700288.

[200] DesrochesJ, JermynM, PintoM, et al. A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy[J]. Scientific Reports, 8( 1): 1792.

[201] Han L M, Duan W J, Li X W, et al. Surface-enhanced resonance Raman scattering-guided brain tumor surgery showing prognostic benefit in rat models[J]. ACS Applied Materials & Interfaces, 2019, 11(17): 15241-15250.

[202] Shams R, Picot F, Grajales D, et al. Pre-clinical evaluation of an image-guided in situ Raman spectroscopy navigation system for targeted prostate cancer interventions[J]. International Journal of Computer Assisted Radiology and Surgery, 2020, 15(5): 867-876.

[203] McGregor H C, Short M A, Lam S, et al. Development and in vivo test of a miniature Raman probe for early cancer detection in the peripheral lung[J]. Journal of Biophotonics, 2018, 11(11): e201800055.

[204] Lin D, Qiu S F, Huang W, et al. Autofluorescence and white light imaging-guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection[J]. Journal of Biophotonics, 2018, 11(4): e201700251.

[205] 徐浩, 朱勇康, 陆燕飞, 等. 拉曼探头的发展及其生物医学应用[J]. 激光与光电子学进展, 2019, 56(11): 110005.

    Xu H, Zhu Y K, Lu Y F, et al. Development and biomedical application of Raman probe[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110005.

祁亚峰, 刘宇宏, 刘大猛. 拉曼光谱技术在肿瘤诊断上的应用研究进展[J]. 激光与光电子学进展, 2020, 57(22): 220001. Qi Yafeng, Liu Yuhong, Liu Dameng. Research Progress on Application of Raman Spectroscopy in Tumor Diagnosis[J]. Laser & Optoelectronics Progress, 2020, 57(22): 220001.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!