光学与光电技术, 2018, 16 (2): 55, 网络出版: 2018-06-01  

用Burg算法提升空间调制傅里叶光谱仪分辨率与定阶方法

Spatial-Modulated Fourier Spectrometer Resolution Improvement Based on the Burg Algorithm and Order Determination
作者单位
北京工业大学应用数理学院, 北京 100124
摘要
对于空间调制傅里叶光谱仪来说,由于数据长度受到CCD像元数量和最大光程差的限制。而分辨率大小反比于数据的实际长度,因此通常经过傅里叶变换所得到的分辨率是受到了数据长度的限制的。除了增加CCD像元数量、更改像元尺寸、改善光路等改变硬件的方法外,还可以使用现代谱估计的方法,通过对数据建立模型进行外推,从而有效扩充数据长度,提高分辨率。利用Burg算法,计算空间调制傅里叶光谱仪所得数据的自回归(AR)模型功率谱。通过此方法获得的计算结果在适当的AR模型选阶的情况下,具有高计算分辨率的特点,并且在获得数据的空间频率较低、像元数量较少的情况下仍然拥有一定的频率分辨能力。实验计算了不同选阶之下,FFT算法和不同选阶下Burg算法测量结果与其稳定程度,说明了Burg算法的选阶对光谱分辨率有着切实的影响,而且应用补零的FFT算法虽然无法提高光谱的分辨能力,但是会通过减少栅栏效应增强光谱计算分辨率,并且稳定程度与Burg算法在适当选阶下相近。
Abstract
For the spacial modulated Fourier spectrometer, the data length is limited by the number of CCD pixels. And the frequency resolution is inversely proportional to the actual length of the data, so the resolution obtained by the usual Fourier transform is limited by the length of the data. Except for the method of changing the hardware by changing the number of CCD pixels and changing the cell size, the modern spectral estimation method cam be also used. The data model is estblished and extrapolated, so as to extend the length of data and improve the resolution. In this paper, the Burg algorithm is used to calculate the power spectrum of the auto-regressive model of the data obtained by the spacial modulated Fourier spectrometer. The results obtained by this method have the characteristics of high computational resolution in the case of the appropriate AR model selection order, and still have some frequency resolution ability when the spatial frequency of the data is limited. Experimental results show that the order of Burg algorithm effects frequency resolution and although spectral resolution can not be improved by using zero fill before FFT, it obtains a result whose stability is similar to the result using Burg algorithm.
参考文献

[1] 吴航行, 华建文, 王培纲, 等. 傅里叶变换光谱仪中干涉信号的畸变[J]. 红外技术, 2004, 26(4): 25-30.

    WU Hang-xing, HUA Jian-wen, Wang Pei-gang, et al. Distortion of interference signals in Fourier transform spectrometer [J]. Infrared Technology, 2004, 26 (4): 25-30.

[2] 简小华, 张淳民, 赵葆常. 研究干涉图处理与光谱复原的一种新方法[J]. 物理学报, 2007, 56(2): 824-829.

    JIAN Xiao-hua, ZHANG Chun-min, ZHAO Bao-chang. A new method of interferogram processing and spectral restoration [J]. Acta Phys. Sinica, 2007, 56 (2): 824-829.

[3] 付占方, 刘学斌. 基于现代谱估计技术的干涉光谱复原算法[J]. 光子学报, 2013, 42(9): 1091-1096.

    FU Zhan-fang, LIU Xue-bin. Interferometric spectral restoration algorithm based on modern spectral estimation technique [J]. Acta Photonica Sinica, 2013, 42 (9): 1091-1096.

[4] 付建国, 梁静秋, 梁中翥. 一种静态傅里叶变换红外光谱仪的光学系统分析与设计[J], 光学学报, 2012, (2): 273-280

    FU Jian-guo, LIANG Jing-qiu, LIANG Zhong-zhu. Analysis and design of optical system, a static Fourier transform infrared spectrometer[J]. Optics Sinica, 2012, (2): 273-280

[5] 罗晓华. Burg谱的阶数依赖性与最佳正则化参数的选择[J]. 东莞理工学院学报, 2010, 17(3): 51-54.

    LOU Xiao-hua. The order dependence of Burg spectra and the choice of the best regularization parameter [J]. Journal of Dongguan University of Technology, 2010, 17 (3): 51-54.

[6] 蒋雨燕, 黄宜坚. 调速阀故障诊断的AR双谱定阶方法比较[J]. 华侨大学学报(自然版), 2009, 30(2): 123-126.

    JIANG Yu-yan, HUANG Yi-jian. Fault diagnosis of speed control valve AR Order Bispectrum method [J]. Journal of Huaqiao University (Natural Science Edition), 2009, 30 (2): 123-126.

[7] 薛毅. 串行通信模式线阵CCD驱动电子系统研究及其应用[D]. 北京: 北京工业大学, 2016.

    XUE Xue-yi. Research and application of serial communication mode linear CCD drive electronic system [D]. Beijing: Beijing University of Technology, 2016.

[8] 胡广书. 数字信号处理-理论算法与实现[M]. 3版. 北京: 清华大学出版社, 2012.

    HU Guang-shu. Digital signal processing - theory, algorithms and implementation[M]. 3rd ed. Beijing: Tsinghua University press, 2012

[9] 刘平午, 阎华. AR谱估计的谱线分辨力[J]. 测试技术学报, 1998, (2): 139-144.

    LIU Ping-wu, YAN Hua. Spectral line resolution of AR spectral estimation[J]. Journal of test technology, 1998 (2): 139-144.

[10] 张柏林, 杨承志, 吴宏超. 基于AR模型的Yule-Walker法和Burg法功率谱估计性能分析[J]. 计算机与数字工程, 2016, 44(5): 813-817.

    ZHANG Bo-lin, YANG Cheng-zhi, WU Hong-chao. Performance analysis of power spectrum estimation based on AR model and Burg method [J]. Computer and Digital Engineering, 2016, 44 (5): 813-817.

[11] 赵耐青. 用Burg算法进行谱分析[J]. 中国医学物理学杂志, 1985, (1): 22-26.

    ZHAO Nai-qing. Spectral analysis using Burg algorithm [J]. Chinese Journal of Medical Physics, 1985, (1): 22-26.

[12] 郝重阳, 赵荣椿. 论频率分辨率与频率步长的关系以及数据添零对频谱的影响[J]. 西北工业大学学报, 1995(3): 408-413.

    HAO Chong-yang, ZHAO Rong-chun. The relationship between frequency resolution and frequency step, and the influence of zero adding data on frequency spectrum[J]. Journal of Northwestern Polytechnical University, 1995, (3): 408-413.

[13] 刘金星. 现代谱估计技术的研究应用与FPGA实现[D]. 成都: 电子科技大学, 2016.

    LIU Jin-xing. Research and application of modern spectral estimation technique and FPGA implementation[D]. Chengdu: University of Electronic Science and Technology of China, 2016.

马铎轩, 彭月祥. 用Burg算法提升空间调制傅里叶光谱仪分辨率与定阶方法[J]. 光学与光电技术, 2018, 16(2): 55. MA Duo-xuan, PENG Yue-xiang. Spatial-Modulated Fourier Spectrometer Resolution Improvement Based on the Burg Algorithm and Order Determination[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2018, 16(2): 55.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!