大气与环境光学学报, 2012, 7 (4): 254, 网络出版: 2012-10-08   

苯乙烯-臭氧反应产生的二次有机气溶胶的吸湿性研究

Hygroscopicity of SOA Formed by Ozonolysis of Styrene
作者单位
中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
摘要
基于自主搭建的加湿串联差分迁移率分析仪(hygroscopic tandem differential mobility analyzer, H-TDMA)和实 验室烟雾箱模拟系统,分别对有无种子气溶胶(硫酸铵)存在的条件下,苯乙烯臭氧氧化反应体系产生的二次有机 气溶胶(secondary organic aerosol, SOA)的吸湿性进行了研究。通过对反应产生的不同粒径 的SOA粒子(70 nm, 85 nm, 100 nm)的吸湿性测量,发现无论有无种子气溶胶的存在,产生的SOA粒 子的吸湿生长因子(growth factor, GF)(相对湿度为85%)都随着反应时间的继续而逐渐增大; 并且在有硫酸铵种子气溶胶存在的条件下产生的SOA的吸湿性比无种子气溶胶情况下产生的粒子的吸 湿性更强,但比纯的硫酸铵无机气溶胶的吸湿性要小。分析表明随着氧化反应的进行,更多的吸湿 性较大的高极性氧化产物分配到SOA粒子中,导致这些粒子的GF由反应初始阶段的<1逐渐增大到>1; 而在有种子气溶胶存在的条件下产生的SOA粒子,由于受硫酸铵种子气溶胶较强吸湿性的影响, 比没有种子气溶胶时产生的纯SOA相对要强,但这种影响受限于外层包裹的有机组分的较低的吸湿 性(相对于硫酸铵),因此远小于纯硫酸铵气溶胶的吸湿生长因子。而不同粒径的SOA粒子的吸湿性生 长因子随时间的演化关系所表现出来的一致性,也表明了在本实验条件下,产生的SOA气溶胶粒子的化学组成不依赖于粒子的粒径。
Abstract
The hygroscopic property of secondary organic aerosols (SOA) formed by ozonolysis of styrene has been comprehensively studied on the basis of self-assembled hygroscopic-tandem differential mobility analyzer (H-TDMA) and the homemade smog chamber. SOA was produced in the dry chamber (RH<5%) in the presence and absence of ammonium sulfate seed particles, and the diameter-based (70 nm, 85 nm, 100 nm) hygroscopic growth factor (GF) of the SOA as a function of time has been measured by using H-TDMA. It is found that the aerosol water uptake increases with reaction time in the experiment for all the SOA with or without seed particles, which indicates that more highly oxidized polar compounds (more hygroscopic) are partitioned into particles according to the reaction time. The effect of seed particles on the hygroscopicity of the aerosols, although limited by the wrap of organic components, is also investigated. And different classified diameters of SOA exhibit similar hygroscopic growth factors, suggesting that the aerosol composition is independent of particle size.
参考文献

[1] Sisler J F, Malm W C. The relative importance of soluble aerosols to spatial and seasonal trends of impaired visibility in the United States [J]. Atmos. Environ., 1994, 28(5): 851-862.

[2] Charlson R J, Schwartz S E, Hales J M, et al. Climate forcing by anthropogenic aerosol [J]. Science, 1992, 255(5043): 423-430.

[3] Dusek U, Frank G P, Hildebrandt L. Size matters more than chemistry for cloud-nucleating ability of aerosol particles [J]. Science, 2006, 312(5778): 1375-1378.

[4] IPCC, 2007. Climate change 2007: the physical science basis [C]. In Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, United Kingdom and New York, NY, USA.

[5] Chan H K, Eberl S, Daviskas E, et al. Changes in lung deposition of aerosols due to hygroscopic growth: a fast SPECT study [J]. Journal of Aerosol Medicine, 2002, 15(3): 307-311.

[6] Tang I N. Water transformation and growth of aerosol particles composed of mixed salts [J]. J. Aerosol Sci., 1976, 7(5): 361-371.

[7] Tang I N, Munkelwitz H R. Water activities, densities, and refractive-indices of aqueous sulfates and sodium-nitrate droplets of atmospheric importance [J]. J. Geophys. Res. -Atmos., 1994, 99(D9): 18801-18808.

[8] Weis D D, Ewing G E. Water content and morphology of sodium chloride aerosol particles [J]. J. Geophys. Res. -Atmos., 1999, 104(D17): 21275-21285.

[9] Zhang Y, Seigneur C, Seinfeld J H, et al. A comparative review of inorganic aerosol thermodynamic equilibrium modules: similarities, differences, and their likely causes [J]. Atmospheric Environment, 2000, 34(1): 117-137.

[10] Topping D O, McFiggans G B, Coe H. A curved multi-component aerosol hygroscopicity model framework: part 1- inorganic compounds [J]. Atmos. Chem. Phys., 2005, 5(5): 1205-1222.

[11] Saxena P, Hildemann L M. Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds [J]. J. Atmos. Chem., 1996, 24(1): 57-109.

[12] Hallquist M, Wenger J C, Baltensperger U, et al. The formation, properties and impact of secondary organic aerosol: current and emerging issuers [J]. Atmos. Chem. Phys., 2009, 9(14): 5155-5236.

[13] Li W J, Zhang D Z, Shao L Y, et al. Individual particle analysis of aerosols collected under haze and non-haze conditions at a high-elevation mountain site in the North China Plain [J]. Atmos. Chem. Phys., 2011, 11(8): 11733-11744.

[14] Cocker D R III, Mader B T, Kalberer M, et al. The effect of water on gas-particle partitioning of secondary organic aerosol: II. m-xylene and 1,3,5-trimethylbenzene photooxidation systems [J]. Atmos. Environ., 2001, 35(35): 6073-6085.

[15] Varutbangkul V, Brechtel F J, Bahreini R, et al. Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds [J]. Atmos. Chem. Phys., 2006, 6(1): 2367-2388.

[16] Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Styrene [R]. U. S. Public Health Service, U. S. Department of Health and Human Services, Atlanta, GA, 1992.

[17] Bufalini J J, Altshuller A P. Kinetics of vapor-phase hydrocarbon-ozone reactions [J]. Can. J. Chem., 1965, 43: 2243-2251.

[18] Tuazon E C, Arey J, Atkinson R, et al. Gas-phase reactions of 2-vinylpyridine and styrene with OH and NO3 radicals and O3 [J]. Environ. Sci. Technol., 1993, 27(9): 1832-1841.

[19] Carter W P L, Luo D, Malkina I L. Final Report to the Styrene Information and Research Center [R]. 1999.

[20] 贾 龙, 徐永福. 苯乙烯-NOx光照的二次有机气溶胶生成 [J]. 化学学报, 2010, 68(23): 2429-2435.

    Jia Long, Xu Yongfu. Formation of secondary organic aerosol from the styrene-NOx irradiation [J]. Acta Chimica Sinica, 2010, 68(23): 2429-2435(in Chinese).

[21] McMurry P H, Stolzenburg M R. On the sensitivity of particle size to relative humidity for Los Angeles aerosols [J]. Atmos. Environ., 1989, 23(2): 497-507.

[22] Liu P Y H, Pui D Y H, Whiby K T, et al. The aerosol mobility chromatograph: a new detector for sulfuric acid aerosols [J]. Atmos. Environ., 1978, 12(1-3): 99-104.

[23] Pan G, Hu C J, Wang Z Y, et al. Direct detection of isoprene photooxidation products by using synchrotron radiation photoionization mass spectrometry [J]. Rapid Commun. Mass Spectrom., 2012, 26(2): 189-194.

[24] Liu X Y, Zhang W J, Huang M Q, et al. Effect of illumination intensity and light application time on secondary organic aerosol formation from the photooxidation of α-pinene [J]. J. Environ. Sci-China, 2009, 21(4): 447-451.

[25] 王 轩, 陈建华, 陈建民, 等. 实验室发生纳米气溶胶吸湿性表征 [J]. 环境科学研究, 2011, 24(6): 621-631.

    Wang Xuan, Chen Jianhua, Chen Jianmin, et al. Characterization of hygroscopic properties of laboratory-generated nanometer aerosols [J]. Research of Environmental Sciences, 2011, 24(6): 621-631(in Chinese).

[26] Villani P, Picard D, Michaud V, et al. Design and validation of a volatility hygroscopic tandem differential mobility analyzer (VH-TDMA) to characterize the relationships between the thermal and hygroscopic properties of atmospheric aerosol particles [J]. Aerosol Science and Technology, 2008, 42(9): 729-741.

郑晓宏, 胡长进, 潘刚, 程跃, 刘志, 赵卫雄, 顾学军, 张为俊. 苯乙烯-臭氧反应产生的二次有机气溶胶的吸湿性研究[J]. 大气与环境光学学报, 2012, 7(4): 254. ZHENG Xiao-hong, HU Chang-jin, PAN Gang, CHENG Yue, LIU Zhi, ZHAO Wei-xiong, GU Xue-jun, ZHANG Wei-jun. Hygroscopicity of SOA Formed by Ozonolysis of Styrene[J]. Journal of Atmospheric and Environmental Optics, 2012, 7(4): 254.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!