Frontiers of Optoelectronics, 2010, 3 (2): 125, 网络出版: 2012-09-20  

One-dimensional nanostructures for electronic and optoelectronic devices

One-dimensional nanostructures for electronic and optoelectronic devices
作者单位
Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
摘要
Abstract
One-dimensional (1-D) nanostructures have been the focus of current researches due to their unique physical properties and potential applications in nanoscale electronics and optoelectronics. They address and overcome the physical and economic limits of current microelectronic industry and will lead to reduced power consumption and largely increased device speed in next generation electronics and optoelectronics. This paper reviews the recent development on the device applications of 1-D nanostructures in electronics and optoelectronics. First, typical 1-D nanostructure forms, including nanorods, nanowires, nanotubes, nanobelts, and hetero-nanowires, synthesized from different methods are briefly discussed. Then, some nanoscale electronic and optoelectronic devices built on 1-D nanostructures are presented, including field-effect transistors (FETs), p-n diodes, ultraviolet (UV) detectors, light-emitting diodes (LEDs), nanolasers, integrated nanodevices, single nanowire solar cells, chemical sensors, biosensors, and nanogenerators. We then finalize the paper with some perspectives and outlook towards the fast-growing topics.
参考文献

[1] Wang Z L. Nanowires and Nanobelts: Materials, Properties and Devices. Netherlands: Kluwer Academic Publishers, 2003

[2] Li Y, Qian F, Xiang J, Lieber C M. Nanowire electronic and optoelectronic devices. Materials Today, 2006, 9(10): 18-27

[3] Meindl J D, Chen Q, Davis J A. Limits on silicon nanoelectronics for terascale integration. Science, 2001, 293(5537): 2044-2049

[4] Shen G Z, Chen D, Chen P C, Zhou C. Vapor-solid growth of onedimensional layer-structured gallium sulfide nanostructures. ACS Nano, 2009, 3(5): 1115-1120

[5] Chen P C, Shen G Z, Zhou C. Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. IEEE Transactions on Nanotechnology, 2008, 7(6): 668-682

[6] Zhang J, Chen P C, Shen G Z, He J B, Kumbhar A, Zhou C, Fang J. P-type field-effect transistors of single-crystal zinc telluride nanobelts. Angewandte Chemie—International Edition, 2008, 47(49): 9469-9471

[7] Shen G Z, Chen D. Self-coiling of Ag2V4O11 nanobelts into perfect nanorings and microloops. Journal of the American Chemical Society, 2006, 128(36): 11762-11763

[8] Duan X, Huang Y, Cui Y, Wang J, Lieber C M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001, 409(6816): 66-69

[9] Huang Y, Duan X, Wei Q, Lieber C M. Directed assembly of onedimensional nanostructures into functional networks. Science, 2001, 291(5504): 630-633

[10] Shen G Z, Chen D, Zhou C. One-step thermo-chemical synthetic method for nanoscale one-dimensional heterostructures. Chemistry of Materials, 2008, 20(12): 3788-3790

[11] Pan ZW, Dai Z R,Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947-1949

[12] Dai Z R, Pan Z W, Wang Z L. Gallium oxide nanoribbons and nanosheets. Journal of Physical Chemistry B, 2002, 106(5): 902-904

[13] Comini E, Faglia G, Sberveglieri G, Pan Z W, Wang Z L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Applied Physics Letters, 2002, 81(10): 1869-1871

[14] Shen G Z, Chen D, Lee C J. Hierarchical saw-like ZnO nanobelt/ZnS nanowire heterostructures induced by polar surfaces. Journal of Physical Chemistry B, 2006, 110(32): 15689-15693

[15] Shen G Z, Bando Y, Chen D, Liu B D, Zhi C Y, Golberg D. Morphology-controlled growth of ZnO nanostructures by a roundto-round metal vapor deposition method. Journal of Physical Chemistry B, 2006, 110(9): 3973-3978

[16] Cui Y, Wei Q, Park H, Lieber C M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293(5533): 1289-1292

[17] Huang Y, Duan X, Cui Y, Lauhon L J, Kim K, Lieber C M. Logic gates and computation from assembled nanowire building blocks. Science, 2001, 294(5545): 1313-1317

[18] Shen G Z, Bando Y, Hu J Q, Golberg D. High-symmetry ZnS hepta- and tetrapods composed of assembled ZnS nanowire arrays. Applied Physics Letters, 2007, 90(12): 123101

[19] Law M, Kind H, Messer B, Kim F, Yang P. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angewandte Chemie—International Edition, 2002, 41(13): 2405-2408

[20] Kolmakov A. Chemical sensing and catalysis by one-dimensional nanostructures. International Journal of Nanotechnology, 2008, 5(4-5): 450-474

[21] Shen G Z, Bando Y, Golberg D. Self-assembled hierarchical single-crystalline β-SiC nanoarchitectures. Crystal Growth & Design, 2007, 7(1): 35-38

[22] Dai Z R, Pan Z W, Wang Z L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Advanced Functional Materials, 2003, 13(1): 9-24

[23] Arnold M S, Avouris P, Pan Z W, Wang Z L. Field-effect transistors based on single semiconducting oxide nanobelts. Journal of Physical Chemistry B, 2003, 107(3): 659-663

[24] Wang Z L. Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology. Annual Review of Physical Chemistry, 2004, 55: 159-196

[25] Shen G Z, Bando Y, Ye C H, Yuan X L, Sekiguchi T, Golberg D. Single-crystal nanotubes of II3-V2 semiconductors. Angewandte Chemie—International Edition, 2006, 45(45): 7568-7572

[26] Duan X, Huang Y, Agarwal R, Lieber C M. Single-nanowire electrically driven lasers. Nature, 2003, 421(6920): 241-245

[27] Zhong Z, Qian F, Wang D, Lieber C M. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Letters, 2003, 3(3): 343-346

[28] Zhong Z, Wang D, Cui Y, Bockrath M W, Lieber C M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science, 2003, 302(5649): 1377-1379

[29] Shen G Z, Bando Y, Liu B D, Tang C C, Golberg D. Unconventional zigzag indium phosphide single-crystalline and twinned nanowires. Journal of Physical Chemistry B, 2006, 110(41): 20129-20132

[30] Wang Z L, Kong X Y, Ding Y, Gao P X, Hughes W L, Yang R S, Zhang Y. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Advanced Functional Materials, 2004, 14(10): 943-956

[31] Huang M, Choudrey A, Yang P. Ag nanowire formation within mesoporous silica. Chemical Communications, 2002, 12: 1063-1064

[32] Shen G Z, Bando Y, Liu B D, Tang C C, Huang Q, Golberg D. Systematic investigation of the formation of 1D α-Si3N4 nanostructures by using a thermal-decompsition/nitridation process. Chemistry—A European Journal, 2006, 12(11): 2987-2993

[33] Shen G Z, Bando Y, Golberg D. Self-assembled three-dimensional structures of single-crystalline ZnS submicrotubes formed by coalescence of ZnS nanowires. Applied Physics Letters, 2006, 88(12): 123107

[34] Gudiksen M S, Lauhon L J,Wang J, Smith D, Lieber C M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature, 2002, 415(6872): 617-620

[35] Duan X, Huang Y, Cui Y, Lieber C M. Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Letters, 2002, 2(5): 487-490

[36] Shen G Z, Chen D, Bando Y, Golberg D. One-dimensional (1-D) nanoscale heterostructures. Journal of Materials Science & Technology, 2008, 24(4): 541-549

[37] Qiu X F, Lou Y B, Samia A C S, Devadoss A, Burgess J D, Dayal S, Burda C. PbTe nanorods by sonoelectronchemistry. Angewandte Chemie—International Edition, 2005, 44(36): 5855-5857

[38] Shen G Z, Bando Y, Tang C C, Golberg D. Self-organized hierarchical ZnS/SiO2 nanowire heterostructures. Journal of Physical Chemistry B, 2006, 110(14): 7199-7202

[39] Wang D, Qian F, Yang C, Zhong Z, Lieber C M. Rational growth of branched and hyperbranched nanowire structures. Nano Letters, 2004, 4(5): 871-874

[40] Jin S, Whang D, McAlpine M C, Friedman R S, Wu Y, Lieber C M. Scalable interconnection and integration of nanowire devices without registration. Nano Letters, 2004, 4(5): 915-919

[41] Lauhon L J, Gudiksen M S, Lieber C M. Semiconductor nanowire heterostructures. Philosophical Transactions of the Royal Society of London A, 2004, 362: 1247-1260

[42] Shen G Z, Chen D. One-dimensional nanostructures and devices of II-V group semiconductors. Nanoscale Research Letters, 2009, 4(8): 779-788

[43] Yu G, Li X, Lieber C M, Cao A. Nanomaterial-incorporated blown bubble films for large-area, aligned nanostructures. Journal of Materials Chemistry, 2008, 18(7): 728-734

[44] Lu W, Lieber C M. Nanoelectronics from the bottom up. Nature Materials, 2007, 6(11): 841-850

[45] Hu Y, Churchill H O H, Reilly D J, Xiang J, Lieber CM, Marcus C M. A Ge/Si heterostructure nanowire-based double quantum dot with intetrated charge sensor. Nature Nanotechnology, 2007, 2(10): 622-625

[46] Patolsky F, Timko B P, Zheng G, Lieber C M. Nanowire-based nanoelectronic devices in the life science. MRS Bulletin, 2007, 32(22): 142-149

[47] Shen G Z, Chen P C, Ryu K, Zhou C. Devices and chemical sensing applications of metal oxide nanowires. Journal of Materials Chemistry, 2009, 19(7): 828-839

[48] Li C, Zhang D, Han S, Liu X, Tang T, Zhou C. Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties. Advanced Materials, 2003, 15(2): 143-146

[49] Ju S, Li J, Liu J, Chen P C, Ha Y, Ishikawa F N, Chang H K, Zhou C, Facchetti A, Janes D B, Marks T J. Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry. Nano Letters, 2008, 8(4): 997-1004

[50] Melosh N A, Boukai A, Diana F, Gerardot B, Badolato A, Petroff P M, Heath J R. Ultrahigh-density nanowire lattices and circuits. Science, 2003, 300(5616): 112-115

[51] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897-1899

[52] Cao G Z, Liu D W. Template-based synthesis of nanorod, nanowire, and nanotube arrays. Advanced Colloid Interface Science, 2008, 136(1-2): 45-64

[53] Rao C N R, Deepak F L, Gundiah G, Govindaraja A. Inorganic nanowires. Progress in Solid State Chemistry, 2003, 31(1-2): 5-147

[54] Ming T, Kou X S, Chen H J,Wang T, Tam H L, Cheah KW, Chen J Y, Wang J F. Angewandte Chemie—International Edition, 2008, 47(50): 9685-9690

[55] Kim S, Kim S K, Park S. Bimetallic gold-silver nanorods produce multiple surface plasmon bands. Journal of the American Chemical Society, 2009, 131(24): 8380-8381

[56] Khanal B P, Zubarev E R. Purification of high aspect ratio gold nanorods: complete removal of platelets. Journal of the American Chemical Society, 2008, 130(38): 12634-12635

[57] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56-58

[58] Shen G Z, Bando Y, Golberg D. Recent developments in singlecrystal inorganic nanotubes synthesized from removable templates. International Journal of Nanotechnology, 2007, 4(6): 730-749

[59] Shen G Z, Bando Y, Golberg D. Size-tunable synthesis of SiO2 nanotubes via a simple in situ templatelike process. Journal of Physical Chemistry B, 2006, 110(46): 23170-23174

[60] Shen G Z, Bando Y, Zhi C Y, Golberg D. Tubular carbon nano/microstructures synthesized from graphite powders by an in situ template process. Journal of Physical Chemistry B, 2006, 110(22): 10714-10719

[61] Gautam U K, Vivekchand S R C, Govindaraj A, Kulkarni G U, Selvi N R, Rao C N R. Generation of onions and nanotubes of GaS and GaSe through laser and thermally induced exfoliation. Journal of the American Chemical Society, 2005, 127(1111): 3658-3659

[62] Goldberger J, He R R, Zhang Y F, Lee SW, Yan H, Choi H J, Yang P. Single-crystal gallium nitride nanotubes. Nature, 2003, 422(6932): 599-602

[63] Fan H J, Yang Y, Zacharias M. ZnO-based ternary compound nanotubes and nanowires. Journal of Materials Chemistry, 2009, 19(7): 885-900

[64] Yu Q J, Fu W, Yu C, Yang H, Wei R, Li M, Liu S, Sui Y, Liu Z, Yuan M, Zou G, Wang G, Shao C, Liu Y. Fabrication and optical properties of large-scale ZnO nanotube bundles via a simple solution route. Journal of Physical Chemistry C, 2007, 111(47): 17521-17526

[65] Fan H J, Gosele U, Zacharias M. Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small, 2007, 3(10): 1660-1671

[66] Shen G Z, Bando Y, Golberg D. Synthesis and structures of highquality single-crystalline II3-V2 semiconductor nanobelts. Journal of Physical Chemistry C, 2007, 111(13): 5044-5049

[67] Shen G Z, Cho J H, Yoo J K, Yi G C, Lee C J. Synthesis of singlecrystal CdS microbelts using a modified thermal evaporation method and their photoluminescence. Journal of Physical Chemistry B, 2005, 109(19): 9294-9298

[68] Choi J R, Oh S J, Ju H, Cheon J. Massive fabrication of freestanding one-dimensional Co/Pt nanostructures and modulation of ferromagnetism via a programmable barcode layer effect. Nano Letters, 2005, 5(11): 2179-2183

[69] Huang Y, Duan X F, Lieber C M. Semiconductor Nanowires: Nanoscale Electronics and Optoelectronics. London: Taylor & Francis, 2005

[70] Xiang J, Lu W, Hu Y, Wu Y, Yan H, Lieber C M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature, 2006, 441(7092): 489-493

[71] Chen P C, Shen G Z, Chen H, Ha Y G,Wu C, Sukcharoenchoke S, Fu Y, Liu J, Facchetti A, Marks T J, Thompson M E, Zhou C. High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays. ACS Nano, 2009, 3(11): 3383-3390

[72] Hayden O, Agarwal R, Lieber C M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nature Materials, 2006, 5(5): 352-356

[73] Yang R, Chueh Y L, Morber J R, Snyder R, Chou L J, Wang Z L. Single-crystalline branched zinc phosphide nanostructures: synthesis, properties, and optoelectronic devices. Nano Letters, 2007, 7(2): 269-275

[74] Wang J, Gudiksen M S, Duan X, Cui Y, Lieber C M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science, 2001, 293(5534): 1455-1457

[75] Qian F, Li Y, Gradecak S, Wang D, Barrelet C J, Lieber C M. Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Letters, 2004, 4(10): 1975-1979

[76] Qian F, Gradecak S, Li Y, Wen C Y, Lieber C M. Core/multishell nanowire heterostructures as multicolor, high-efficiency lightemitting diodes. Nano Letter, 2005, 5(11): 2287-2291

[77] Johnson J C, Yan H, Schaller R D, Haber L H, Saykally R J, Yang P. Single nanowire lasers. Journal of Physical Chemistry B, 2001, 105(46): 11387-11390

[78] Yan H, He R, Johnson J, Law M, Saykally R J, Yang P. Dendrite nanowire UV laser array. Journal of the American Chemical Society, 2003, 125(16): 4728-4729

[79] Yan H, Justin J, Law M, Saykally R, Yang P. Nanoribbon UV lasers. Advanced Materials, 2003, 15(6): 1907-1911

[80] Zhang C, Zhang F, Xia T, Kumar N, Hahm J I, Liu J, Wang Z L, Xu J. Low-threshold two-photon pumped ZnO nanowire lasers. Optics Express, 2009, 17(10): 7894-7900

[81] Qian F, Li Y, Gradecak S, Park H G, Dong Y, Ding Y, Wang Z L, Lieber C M. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Materials, 2008, 7(9): 701-706

[82] Law M, Greene L E, Johnson J C, Saykally R, Yang P. Nanowire dye-sensitized solar cells. Nature Materials, 2005, 4(6): 455-459

[83] Law M, Greene L E, Radenovic A, Kuykendall T, Liphardt J, Yang P. Core-shell nanowire dye-sensitized solar cells. Journal of Physical Chemistry B, 2006, 110(45): 22652-22663

[84] Greene L E, Law M, Yuhas B D, Yang P. ZnO-TiO2 core/shell nanorod/P3HT solar cells. Journal of Physical Chemistry C, 2007, 111(50): 18451-18456

[85] Garnett E C, Yang P. Silicon nanowire radial p-n junction solar cells. Journal of the American Chemical Society, 2008, 130(29): 9224-9225

[86] Yuhas B, Yang P. Nanowire-based all-oxide solar cell. Journal of the American Chemical Society, 2009, 131(12): 3756-3757

[87] Tian B, Zheng X, Kempa T J, Fang Y, Yu N, Yu G, Huang J, Lieber C M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 2007, 449(7164): 885-889

[88] Dong Y, Tian B, Kempa T, Lieber C M. Coaxial group III-nitride nanowire photovoltaics. Nano Letters, 2009, 9(5): 2183-2187

[89] Kempa T J, Tian B, Kim D R, Hu J, Zheng X, Lieber C M. Single and tandem axial p-i-n nanowire photovoltaic devices. Nano letters, 2008, 8(10): 3456-3460

[90] Li C, Zhang D, Liu X, Han S, Tang T, Han J, Zhou C. In2O3 nanowires as chemical sensors. Applied Physics Letters, 2003, 82(10): 1613-1615

[91] Zhang D, Liu Z, Li C, Tang T, Liu X, Han S, Lei B, Zhou C. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Letters, 2004, 4(10): 1919-1923

[92] Curreli M, Li C, Sun Y, Lei B, Gundersen M A, Thompson M E, Zhou C. Selective functionalization of In2O3 nanowire mat devices for biosensing application. Journal of the American Chemical Society, 2005, 127(19): 6922-6923

[93] Ishikawa F N, Chang H, Curreli M, Liao H, Olson C, Chen P, Zhang R, Roberts R, Sun R, Cote R, Thompson M, Zhou C. Labelfree, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano, 2009, 3(5): 1219-1225

[94] Chen P, Ishikawa F N, Chang H, Ryu K, Zhou C. Nano electronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination. Nanotechnology, 2009, 20(12): 125503

[95] Ryu K, Zhang D, Zhou C. High-performance metal oxide nanowire chemical sensors with integrated micromachined hotplates. Applied Physics Letters, 2008, 92(9): 93111-93113

[96] Yeh P H, Li Z, Wang Z L. Schottky-gated probe-free ZnO nanowire biosensor. Advanced Materials, 2009, 21(48): 4975-4978

[97] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242-246

[98] Wang X D, Zhou J, Song J H, Liu J, Xu N S, Wang Z L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 2006, 6(12): 2768-2772

[99] Gao P, Song J, Liu J, Wang Z L. Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Advanced Materials, 2007, 19(1): 67-72

[100] He J H, Hsin C L, Liu J, Chen L J, Wang Z L. Piezoelectric gated diode of a single ZnO nanowire. Advanced Materials, 2007, 19(6): 781-784

[101] Wang X D, Liu J, Song J, Wang Z L. Integrated nanogenerators in biofluid. Nano Letters, 2007, 7(8): 2475-2479

[102] Lin Y F, Song J, Ding Y, Liu S, Wang Z L. Piezoelectric nanogenerator using CdS nanowires. Applied Physics Letters, 2008, 92(2): 022105

[103] Qin Y, Wang X, Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging. Nature, 2008, 451(7180): 809-813

[104] Xu S, Wei Y, Liu J, Yang R, Wang Z L. Integrated multilayer nanogenerator fabricated using paired nanotip-to-nanowire brushes. Nano Letters, 2008, 8(11): 4027-4032

[105] Yang R, Qin Y, Dai L, Wang Z L. Power generation with laterallypackaged piezoelectric fine wires. Nature Nanotechnology, 2009, 4(1): 34-39

[106] Wang Z L. Towards self-powered nanosystems: from nanogenerators to nanopiezotronics. Advanced Functional Materials, 2008, 18(22): 3553-3567

Guozhen SHEN, Di CHEN. One-dimensional nanostructures for electronic and optoelectronic devices[J]. Frontiers of Optoelectronics, 2010, 3(2): 125. Guozhen SHEN, Di CHEN. One-dimensional nanostructures for electronic and optoelectronic devices[J]. Frontiers of Optoelectronics, 2010, 3(2): 125.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!