激光生物学报, 2020, 29 (3): 237, 网络出版: 2020-08-06  

改良钼锑抗比色法测定不同谷子材料组织磷含量

Determination of Phosphorus Content in Different Millet Tissues by Modified Molybdenum-antimony Anti-colorimetric Method
作者单位
山西农业大学农学院, 太谷 030801
摘要
缺磷已成为目前制约作物产量提高的非生物胁迫之一, 筛选作物耐低磷资源, 进行作物耐低磷育种已成为作物科学当前研究的热点之一, 因此植物体内磷含量的及时有效的监测也变得尤为重要。本文通过改良前后的钼锑抗比色法测定谷子新鲜幼嫩叶片和幼嫩根系的组织磷含量, 发现改良后的钼锑抗比色法所测的磷含量在一定范围内有良好的线性关系, 线性方程为y=1.060 3x-0.010 3, 线性相关系数达0.998 1。用该方法对谷子新鲜幼嫩叶片、幼嫩根系、成熟叶片、成熟根系、新鲜幼穗、成熟茎秆及液氮冷冻后的相应组织和谷子籽粒的磷含量以及不同磷浓度处理下(0.005、0.250 mmol/L)的谷子材料的磷含量进行测定, 进一步证实了其具有良好的灵敏度和精密度。该方法所测得的标准偏差较小, 在0~0.015 8范围之内; 相对标准偏差(RSD)的范围在0%~1.81%; 检出限的范围在0~0.047 4 μg/mL, 重复性较好,利用该方法还可有效地筛选具有磷吸收效率差异的谷子品种。改良后的钼锑抗比色法测定结果线性良好, 标准差低, 精密度很理想, 适合植物中低浓度磷的测定, 可为不同谷子材料总磷测定提供依据和参考。
Abstract
Phosphorus deficiency has become one of the abiotic stresses that hinder the enhancement of crop yield. It has become one of the hot spots in crop science to screen out low phosphorus tolerance resources and carry out crop breeding for low phosphorus tolerance, and it is particularly important to monitor the phosphorus content in plants timely and effectively. In this paper, the content of phosphorus in the tissues of fresh and young leaves and roots of foxtail millet were determined by molybdenum antimony anti-colorimetric method before and after improvement. It was found that the phosphorus content measured by the modified molybdenum antimony anti-colorimetric method has a good linear relationship with the colorimetric absorbance in a certain range. The linear equation was y=1.060 3x-0.010 3, and the linear correlation coefficient was 0.998 1. Using the method for foxtail millet fresh tender leaf, mature young root, leaf, root, fresh young ear, mature stalks and those tissues which was frozen by liquid nitrogen, and the foxtail millet seeds, the phosphorus content from these different millet crop tissues, and their phosphorus content under different phosphorus concentration treatments (0.005, 0.250 mmol/L) were determined. It is proved that this method has good sensitivity and precision, and the standard deviation measured by this method is small, within the range of 0~0.015 8. The relative standard deviation (RSD) ranges from 0% to 1.81%. The detection limit ranges from 0 to 0.047 4 μg/mL, with good repeatability. The method can also be used to effectively screen foxtail millet varieties with different phosphorus absorption efficiency. Modified molybdenum-antimony anti-colorimetric method has agood linearity, low standard deviation and ideal precision, which is suitable for the determination of low concentration phosphorus in plants, and can provide a basis and reference for the determination of total phosphorus in different foxtail millet materials.
参考文献

[1] 杨辉霞, 童依平, 王道文. 拟南芥低磷胁迫反应分子机理研究的最新进展[J]. 植物学通报, 2007, 24(6): 726-734.

    YANG Huixia, TONG Yiping, WANG Daowen. Latest advances in understanding the molecular genetic mechanism of low phosphate responses in Arabidopsis thaliana[J]. Chinese Bulletin of Botany, 2007, 24(6): 726-734.

[2] HINSINGER P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:a review[J]. Plant and Soil, 2001, 237(2): 173-195.

[3] RICHARDSON, ALAN E. Regulating the phosphorus nutrition of plants:molecular biology meeting agronomic needs[J]. Plant and Soil, 2009, 322(1/2): 17-24.

[4] VANCE C. Phosphorus acquisition and use:critical adaptations by plants securing a nonrenewable resource[J]. New Phytologist, 2003, 157(3): 423-477.

[5] HUSTED S, LAURSEN K H, HEBBERN C A, et al. Manganese deficiency leads to genotype-specific changes in fluorescence induction kinetics and state transitions[J]. Plant Physiology, 2009, 150(2): 825-833.

[6] MACDONALD G K, BENNETT E M, POTTER P A, et al. Agronomic phosphorus imbalances across the world’s croplands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7): 3086-3091.

[7] RUAN W Y, GUO M N, XU L, et al. An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice [J]. The Plant Cell, 2018, 30(4): 853-870.

[8] XU L, ZHAO H Y, WAN R J, et al. Identification of vacuolar phosphate efflux transporters in land plants[J]. Nature Plants, 2019, 5(1): 84-94.

[9] LIU J L, YANG L, LUAN M D, et al. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 6571-6578.

[10] 刁现民. 中国谷子产业与产业技术体系[M]. 北京:中国农业科学技术出版社, 2011.

    DIAO Xianmin. Chinese industry and technical system of foxtail millet[M]. Beijing:China Agricultural Sciences and Technology Press, 2011.

[11] 苑乂川, 陈小雨, 李明明, 等. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应[J]. 作物学报, 2019, 45(4): 601-612.

    YUAN Yichuan, CHEN Xiaoyu, LI Mingming, et al. Screening of germplasm tolerant to low phosphorus of seedling stage and response of root protective enzymes to low phosphorus in foxtail millet[J]. Acta Agronomica Sinica, 2019, 45(4): 601-612.

[12] 陈俊意, 蔡一林, 徐德林, 等. 不同玉米基因型的磷效率和相对生物性状的差异及其回归模型研究[J]. 植物营养与肥料学报, 2007, 13(6): 1068-1073.

    CHEN Junyi, CAI Yilin, XU Delin, et al. Maize genotype differences in phosphorus efficiency and relative biological characteristics and regression modeling analysis[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(6): 1068-1073.

[13] 马建华, 王玉国, 孙毅, 等. 低磷胁迫对不同品种高粱苗期形态及生理指标的影响[J]. 植物营养与肥料学报, 2013, 19(5): 1083-1091.

    MA Jianhua, WANG Yuguo, SUN Yi, et al. Effects of low phosphorous stress on the morphologies and physiological indices of different sorghum cultivars at seedling stage[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(5): 1083-1091.

[14] 刘涛, 陈海英, 余海英, 等. 低磷胁迫下大麦叶片磷素利用特征[J]. 植物学报, 2016, 51(4): 504-514.

    LIU Tao, CHEN Haiying, YU Haiying, et al. Characterization of phosphorus utilization in barley leaf under low phosphorus stress[J]. Chinese Bulletin of Botany, 2016, 51(4):504-514.

[15] 尹元萍, 张雅琼, 申毓晗, 等. 利用根系形态构型筛选磷高效大豆基因型[J]. 分子植物育种, 2015, 13(5): 999-1008.

    YIN Yuanping, ZHANG Yaqiong, SHEN Yuhan, et al. Screening of soybean genotype with high phosphorus efficiency using root morphology and architecture[J]. Molecular Plant Breeding, 2015, 13(5): 999-1008.

[16] 王雪晴, 阮文渊, 易可可. 植物体内磷素状况测定方法的研究进展[J]. 植物生理学报, 2016, 52(9): 1327-1332.

    WANG Xueqing, RUAN Wenyuan, YI Keke. The advances of P status determination in plants[J]. Plant Physiology Journal, 2016, 52(9): 1327-1332.

[17] 陈玮. 钼锑抗比色法测定水中总磷的改进[J]. 山西化工, 2003, 23(1): 18-19, 36.

    CHEN Wei. Improvement of determining total phosphorus by colormetry[J]. Shanxi Chemical Industry, 2003, 23(1): 18-19, 36.

[18] 李会娟. 2种植物磷含量的检测方法比较研究[J]. 现代农业科技, 2012, 577(11): 16-17.

    LI Huijuan. Comparative study on determination of phosphorus content in two kinds of plants[J]. Modern Agricultural Technology, 2012, 577(11): 16-17.

[19] 卢超. 两种测定湿地植物总磷方法的比较研究[J]. 江西农业学报, 2009, 21(8): 142-144.

    LU Chao. Comparative study on two methods for determination of total phosphorus in wetland plants[J]. Acta Agriculturae Jiangxi, 2009, 21(8): 142-144.

[20] 唐启明, 冯明光. 实用统计分析及其数据处理系统[M]. 北京:科学出版社, 2002.

    TANG Qiming, FENG Mingguang. Practical statistical analysis and data processing system[M]. Beijing:Science Press, 2002.

[21] 蔡柏岩, 葛菁萍, 祖伟. 不同磷肥水平对大豆磷营养状况和产量品质性状的影响[J]. 植物营养与肥料学报, 2007, 13(3): 404-410.

    CAI Baiyan, GE Jingping, ZU Wei. Effect of phosphorus levels on soybean phosphorus nutrition, yield and quality[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(3): 404-410.

[22] 冯二静, 郭荣发. 不同基因型甜糯玉米耐低磷能力的评价[J]. 热带农业科学, 2014, 34(2): 12-17, 26.

    FENG Erjing, GUO Rongfa. Evaluation on the low phosphorus endurance of different sweet waxy maize genotypes[J]. Chinese Journal of Tropical Agriculture, 2014, 34(2): 12-17, 26.

[23] 苗雪雪, 龚浩如, 陶曙华, 等. 微波消解-钼锑抗光度法测定蔬菜中总磷[J]. 中国测试, 2017, 43(12): 45-49.

    MIAO Xuexue, GONG Haoru, TAO Shuhua, et al. Microwave digestion combined with molybdenum antimony resistance spectrophotometric method for the determination of total phosphorus in vegetables[J]. China Measurement & Test, 2017, 43(12): 45-49.

[24] 王玉新, 杨树坤. 食品中磷的钼锑抗法测定[J]. 中国公共卫生, 2005, 21(5): 611.

    WANG Yuxin, YANG Shukun. Determination of phosphorus in food bymolybdenum-antimony anti-colorimetric method[J]. Chinese Journal of Public Health, 2005, 21(5): 611.

李萍, 李明明, 王浩, 晋敏姗, 于港华, 邢国芳. 改良钼锑抗比色法测定不同谷子材料组织磷含量[J]. 激光生物学报, 2020, 29(3): 237. LI Ping, LI Mingming, WANG Hao, JIN Minshan, YU Ganghua, XING Guofang. Determination of Phosphorus Content in Different Millet Tissues by Modified Molybdenum-antimony Anti-colorimetric Method[J]. Acta Laser Biology Sinica, 2020, 29(3): 237.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!