中国激光, 2015, 42 (4): 0408003, 网络出版: 2015-02-02   

基于法拉第旋转检测的铷原子磁力仪研究 下载: 527次

Research of Rubidium Atomic Magnetometer Based on Faraday Rotation Detection
作者单位
国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
摘要
基于线偏振光在充有被极化的铷原子的气室内传播时,在磁场的作用下会发生法拉第旋转这一现象,实现了一种基于法拉第旋转检测的铷原子矢量磁力仪。分析了它的工作原理,并测试了它对不同磁场的响应。测试结果表明,磁力仪灵敏度为1 pT/ Hz ,测量范围为±60 nT ,响应带宽为48 Hz。进一步研究了调制磁场和工作温度对铷原子磁力仪性能的影响,并提出了一些提高性能的方法。
Abstract
The polarization plane of linearly polarized light will rotate when it passes through polarized rubidium vapor under the influence of magnetic field. A rubidium atomic vector magnetometer is realized based on this phenomenon. The operation principle is analyzed and the main performance is tested. Test results show that its sensitivity reaches 1 pT/ Hz with measurement range of ±60 nT and bandwidth of 48 Hz . Some factors that influence the magnetometer performance such as magnetic field modulation and vapor cell temperature are discussed. Some methods to further improve the performance of the magnetometer are proposed.
参考文献

[1] Johnson C, Schwindt P, Weisend M. Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer[J]. Appl Phys Lett, 2010, 97(24): 243703.

[2] Wyllie R. The Development of a Multichannel Atomic Magnetometer Array[D]. Madison: University of Wisconsin– Madison, 2012. 1-5.

[3] Mathe V, Levêque F, Mathe P E, et al.. Soil anomaly mapping using a caesium magnetometer: Limits in the low magnetic amplitude case[J]. J App Geophys, 2006, 58(3): 202-217.

[4] Meyer D, Larsen M. Nuclear magnetic resonance gyro for inertial navigation[J]. Gyroscopy and Navigation, 2014, 5(2): 75-82.

[5] Harle P, Wackerle G, Mehring M. A nuclear-spin based rotation sensor using optical polarization and detection methods[J]. Appl Magn Reso, 1993, 5(2): 207-220.

[6] John P, Wikswo J. Squid magnetometers for biomagnetism and nondestructive testing: important questions and initial answers[J]. IEEE T App Supercon, 1995, 5(2): 74-120.

[7] Robbes D. Highly sensitive magnetometers—a review[J]. Sensor Actuat A—Phys, 2006, 129(1-2): 86-93.

[8] Kominis I K, Kornack T W, Allred J C, et al.. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003,422(6932): 596-599.

[9] Lee S K, Sauer K L, Seltzer S J, et al.. Subfemtotesla radio-frequency atomic magnetometer for detection of nuclear quadrupole resonance[J]. Appl Phys Lett, 2006, 89(21): 214106.

[10] Savukov I M, Seltzer S J, Romalis M V, et al.. Tunable atomic magnetometer for detection of radio-frequency Magnetic fields[J]. Phys Rev Lett, 2005, 95(6): 063004.

[11] Patton B, Zhivun E, Hovde D C, et al.. All-optical vector atomic magnetometer[J]. Phys Rev Lett, 2014, 113(1): 013001.

[12] Smullin S J, Savukov I M, Vasilakis G, et al.. Low-noise high-density alkali-metal scalar magnetometer[J]. Phys Rev A, 2009, 80(3): 033420.

[13] Scully M O, Fleischhauer M. High-sensitivity magnetometer based on index-enhanced media[J]. Phys Rev Lett, 1992, 69(9): 1360-1363.

[14] 李庆萌, 张军海, 曾宪金, 等. 铯原子磁力仪中缓冲气体的最佳条件研究[J]. 激光与光电子学进展, 2013, 50(7): 072802.

    Li Qingmeng, Zhang Junhai, Zeng Xianjin, et al.. Optimized condition for buffer gas in cesium atomic magnetometer[J]. Laser & Optoelectronics Progress, 2013, 50(7): 072802.

[15] 刘强, 卓艳男, 孙宇丹, 等. 抽运光频率对全光Cs原子磁力仪灵敏度的影响[J]. 激光与光电子学进展, 2014, 51(4): 042301.

    Liu Qiang, Zhuo Yannan, Sun Yudan, et al.. Influence of pump light frequency on the sensitivity of all- optical Cs atomic magnetometer[J]. Laser & Optoelectronics Progress, 2014, 51(4): 042301.

[16] 周翔, 曹晓超, 盛继腾, 等. 全光学高灵敏度铷原子磁力仪的研究[J]. 物理学报, 2010, 59(2): 877-882.

    Zhou Xiang, Cao Xiaochao, Sheng Jiteng, et al.. All-optical high sensitive atomic magnetometer[J]. Acta Phys Sin, 2010, 59(2): 877-882.

[17] 顾源, 石荣晔, 王延辉. 分布式反馈激光抽运铯磁力仪灵敏度相关参数研究[J]. 物理学报, 2014, 63(11): 110701.

    Gu Yuan, Shi Rongye, Wang Yanhui. Study on sensitivity-related parameters of distributed feedback laser-pumped cesium atomic magnetometer[J]. Acta Phys Sin, 2014, 63(11): 110701.

[18] Happer W. Optical pumping[J]. Rev Mod Phys, 1972, 44(2): 170-238.

[19] Happer W, Mathur B S. Effective operator formalism in optical pumping[J]. Phy Rev, 1967, 163(1): 12-25.

[20] 科尼. 原子光谱学和激光光谱学[M]. 邱元武, 韩全生, 张绮香,译, 北京: 科学出版社, 1984. 189-208.

    Corney A. Atomic and Laser Spectroscopy[M]. Qiu Yuanwu, Han Quansheng, Zhang Qixiang Transl.. Beijing: Science Press, 1984. 189-208.

[21] Seltzer S J. Developments in Alkali-Metal Atomic Magnetometry[D]. Princeton: Princeton University, 2008. 10-31.

[22] Eklund E J. Microgyroscope Based on Spin-Polarized Nuclei[D]. Irvine: University of California, 2008. 23-49.

[23] Happer W, Jau Y Y, Walker T. Optically Pumped Atoms[M]. Weinheim:Wiley-VCH Verlag GmbH& Co, 2010.49-71.

[24] Franzen W. Spin relaxation of optically aligned rubidium vapor[J]. Phys Rev, 1959, 115(4): 850-856.

[25] Romails M V, Miron E, Cates G D. Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, and Xe: line cores and near wings[J]. Phys Rev A, 1997, 56(6): 4569-4578.

丁志超, 李莹颖, 汪之国, 杨开勇, 袁杰. 基于法拉第旋转检测的铷原子磁力仪研究[J]. 中国激光, 2015, 42(4): 0408003. Ding Zhichao, Li Yingying, Wang Zhiguo, Yang Kaiyong, Yuan Jie. Research of Rubidium Atomic Magnetometer Based on Faraday Rotation Detection[J]. Chinese Journal of Lasers, 2015, 42(4): 0408003.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!