激光与光电子学进展, 2020, 57 (24): 240002, 网络出版: 2020-12-30   

基于单分子定位成像技术的研究及展望 下载: 2195次

Review and Prospect for Single Molecule Localization Microscopy
作者单位
1 浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
2 浙江大学宁波研究院, 浙江 宁波 315100
3 山西大学极端光学协同创新中心, 山西 太原 030006
引用该论文

李雨竹, 李传康, 郝翔, 刘旭, 匡翠方. 基于单分子定位成像技术的研究及展望[J]. 激光与光电子学进展, 2020, 57(24): 240002.

Yuzhu Li, Chuankang Li, Xiang Hao, Xu Liu, Cuifang Kuang. Review and Prospect for Single Molecule Localization Microscopy[J]. Laser & Optoelectronics Progress, 2020, 57(24): 240002.

参考文献

[1] Wang B K, Barbiero M, Zhang Q M, et al. Super-resolution optical microscope: principle, instrumentation, and application[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(5): 608-630.

[2] Sauer M, Heilemann M. Single-molecule localization microscopy in eukaryotes[J]. Chemical Reviews, 2017, 117(11): 7478-7509.

[3] Schermelleh L, Ferrand A, Huser T, et al. Super-resolution microscopy demystified[J]. Nature Cell Biology, 2019, 21(1): 72-84.

[4] Mishin A S, Lukyanov K A. Live-cell super-resolution fluorescence microscopy[J]. Biochemistry (Moscow), 2019, 84: 19-31.

[5] 潘文慧, 李文, 屈璟涵, 等. 单分子定位超分辨显微成像有机荧光探针的研究进展[J]. 应用化学, 2019, 36(3): 269-281.

    Pan W H, Li W, Qu J H, et al. Research progress on organic fluorescent probes for single molecule localization microscopy[J]. Chinese Journal of Applied Chemistry, 2019, 36(3): 269-281.

[6] Vangindertael J, Camacho R, Sempels W, et al. An introduction to optical super-resolution microscopy for the adventurous biologist[J]. Methods and Applications in Fluorescence, 2018, 6(2): 022003.

[7] Biteen J, Willets K A. Introduction: super-resolution and single-molecule imaging[J]. Chemical Reviews, 2017, 117(11): 7241-7243.

[8] 付芸, 王天乐, 赵森. 超分辨光学显微的成像原理及应用进展[J]. 激光与光电子学进展, 2019, 56(24): 240002.

    Fu Y, Wang T L, Zhao S. Imaging principles and applications of super-resolution optical microscopy[J]. Laser & Optoelectronics Progress, 2019, 56(24): 240002.

[9] Shashkova S. 37(4): BSR20170031[J]. Leake M C. Single-molecule fluorescence microscopy review: shedding new light on old problems. Bioscience Reports, 2017.

[10] Gordon M P, Ha T, Selvin P R. Single-molecule high-resolution imaging with photobleaching[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(17): 6462-6465.

[11] Orrit M, Bernard J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal[J]. Physical Review Letters, 1990, 65(21): 2716.

[12] Moerner W E, Kador L. Optical detection and spectroscopy of single molecules in a solid[J]. Physical Review Letters, 1989, 62(21): 2535-2538.

[13] Brooks Shera E, Seitzinger N K, Davis L M, et al. Detection of single fluorescent molecules[J]. Chemical Physics Letters, 1990, 174(6): 553-557.

[14] Betzig E. Proposed method for molecular optical imaging[J]. Optics Letters, 1995, 20(3): 237-239.

[15] Lidke K A, Rieger B, Jovin T M, et al. Superresolution by localization of quantum dots using blinking statistics[J]. Optics Express, 2005, 13(18): 7052-7062.

[16] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645.

[17] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-796.

[18] Sharonov A, Hochstrasser R M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(50): 18911-18916.

[19] Heilemann M, van de Linde S, Schüttpelz M, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes[J]. Angewandte Chemie International Edition, 2008, 47(33): 6172-6176.

[20] Huang B, Wang W Q, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008, 319(5864): 810-813.

[21] Shroff H, Galbraith C G, Galbraith J A, et al. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics[J]. Nature Methods, 2008, 5(5): 417-423.

[22] Folling J, Bossi M L, Bock H, et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return[J]. Nature Methods, 2008, 5(11): 943-945.

[23] Lalkens B, Testa I, Willig K I, et al. MRT letter: nanoscopy of protein colocalization in living cells by STED and GSDIM[J]. Microscopy Research and Technique, 2012, 75(1): 1-6.

[24] Piestun R. Pavani S R P, Thompson M A, et al. Three-dimensional single-molecule fluorescence imaging beyond the diffraction limit using a double-helix point spread function[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 2995-2999.

[25] Dertinger T, Colyer R A, Iyer G, et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52): 22287-22292.

[26] Holden S, Uphoff S, Kapanidis A N. DAOSTORM: an algorithm for high- density super-resolution microscopy[J]. Nature Methods, 2011, 8(4): 279-280.

[27] 胡春光, 查日东, 凌秋雨, 等. 超分辨显微技术在活细胞中的应用与发展[J]. 红外与激光工程, 2017, 46(11): 15-25.

    Hu C G, Zha R D, Ling Q Y, et al. Super-resolution microscopy applications and development in living cell[J]. Infrared and Laser Engineering, 2017, 46(11): 15-25.

[28] Gustafsson N, Culley S, Ashdown G W, et al. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations[J]. Nature Communications, 2016, 7(1): 12471.

[29] Balzarotti F, Eilers Y, Gwosch K C, et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 2017, 355(6325): 606-612.

[30] Ouyang W, Aristov A, Lelek M, et al. Deep learning massively accelerates super-resolution localization microscopy[J]. Nature Biotechnology, 2018, 36(5): 460-468.

[31] Nehme E, Weiss L E, Michaeli T, et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning[J]. Optica, 2018, 5(4): 458-464.

[32] Hell S W. MINFLUX Nanoscopy: Superresolution post Nobel[J]. European Biophysics Journal, 2019, 48(S1): S34.

[33] Gu L S, Li Y Y, Zhang S W, et al. Molecular resolution imaging by repetitive optical selective exposure[J]. Nature Methods, 2019, 16(11): 1114-1118.

[34] Cnossen J, Hinsdale T, Thorsen R Ø, et al. Localization microscopy at doubled precision with patterned illumination[J]. Nature Methods, 2020, 17(1): 59-63.

[35] 陈同生. 光漂白机理与荧光共振能量转移效率实时测量技术的研究[D]. 武汉:华中科技大学, 2003.

    Chen TS. Research on photobleaching mechanism and real-time measurement techonology of fluorescent resonance energy transfer efficiency[D]. Wuhan: Huangzhong University of Science and Technology, 2003.

[36] Roubinet B, Weber M, Shojaei H, et al. Fluorescent photoswitchable diarylethenes for biolabeling and single-molecule localization microscopies with optical superresolution[J]. Journal of the American Chemical Society, 2017, 139(19): 6611-6620.

[37] Wang L, Frei M S, Salim A, et al. Small-molecule fluorescent probes for live-cell super-resolution microscopy[J]. Journal of the American Chemical Society, 2019, 141(7): 2770-2781.

[38] Sigal Y M, Zhou R B, Zhuang X W. Visualizing and discovering cellular structures with super-resolution microscopy[J]. Science, 2018, 361(6405): 880-887.

[39] Burnette D T, Sengupta P, Dai Y, et al. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(52): 21081-21086.

[40] Paës G, Habrant A, Terryn C. Fluorescent nano-probes to image plant cell walls by super-resolution STED microscopy[J]. Plants, 2018, 7(1): 11.

[41] 林丹樱, 屈军乐. 超分辨成像及超分辨关联显微技术研究进展[J]. 物理学报, 2017, 66(14): 148703.

    Lin D Y, Qu J L. Recent progress on super-resolution imaging and correlative super-resolution microscopy[J]. Acta Physica Sinica, 2017, 66(14): 148703.

[42] Li H L, Vaughan J C. Switchable fluorophores for single-molecule localization microscopy[J]. Chemical Reviews, 2018, 118(18): 9412-9454.

[43] Wang YL, KanchanawongP. Three-dimensional super resolution microscopy of F-actin filaments by interferometric photoactivated localization microscopy (iPALM)[J]. Journal of Visualized Experiments, 2016( 118): e54774.

[44] Bates M, Huang B, Zhuang X W. Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes[J]. Current Opinion in Chemical Biology, 2008, 12(5): 505-514.

[45] Hess S T. Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 2006, 91(11): 4258-4272.

[46] Stallinga S, Rieger B. Accuracy of the Gaussian point spread function model in 2D localization microscopy[J]. Optics Express, 2010, 18(24): 24461-24476.

[47] Small A, Stahlheber S. Fluorophore localization algorithms for super-resolution microscopy[J]. Nature Methods, 2014, 11(3): 267-279.

[48] Ober R J, Ram S, Ward E S. Localization accuracy in single-molecule microscopy[J]. Biophysical Journal, 2004, 86(2): 1185-1200.

[49] Willets K A, Wilson A J, Sundaresan V, et al. Super-resolution imaging and plasmonics[J]. Chemical Reviews, 2017, 117(11): 7538-7582.

[50] 杨建宇, 潘雷霆, 胡芬, 等. 随机光学重构显微术及其应用研究进展[J]. 红外与激光工程, 2017, 46(11): 1103008.

    Yang J Y, Pan L T, Hu F, et al. Stochastic optical reconstruction microscopy and its application[J]. Infrared and Laser Engineering, 2017, 46(11): 1103008.

[51] Mark Bates W, Huang B, Dempsey G T, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 2007, 317(5845): 1749-1753.

[52] Pereira P M, Almada P, Henriques R. High-content 3D multicolor super-resolution localization microscopy[J]. Methods in Cell Biology, 2015, 125: 95-117.

[53] von Diezmann A, Shechtman Y, Moerner W E. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking[J]. Chemical Reviews, 2017, 117(11): 7244-7275.

[54] Sauer M. Localization microscopy coming of age: from concepts to biological impact[J]. Journal of Cell Science, 2013, 126(16): 3505-3513.

[55] Truong Quang B A, Lenne P F. Superresolution measurements in vivo: imaging Drosophila embryo by photoactivated localization microscopy[J]. Methods in Cell Biology, 2015, 125: 119-142.

[56] Szczurek A, Birk U J, Knecht H, et al. Super-resolution binding activated localization microscopy through reversible change of DNA conformation[J]. Nucleus, 2018, 9(1): 182-189.

[57] Oddone A, Vilanova I V, Tam J, et al. Super-resolution imaging with stochastic single-molecule localization: concepts, technical developments, and biological applications[J]. Microscopy Research and Technique, 2014, 77(7): 502-509.

[58] Auer A A, Strauss M T, Schlichthaerle T, et al. Fast, background-free DNA-PAINT imaging using FRET-based probes[J]. Nano Letters, 2017, 17(10): 6428-6434.

[59] Schlichthaerle T, Strauss M T, Schueder F, et al. Direct visualization of single nuclear pore complex proteins using genetically-encoded probes for DNA-PAINT[J]. Angewandte Chemie International Edition, 2019, 58(37): 13004-13008.

[60] Wade O K, Woehrstein J B, Nickels P C, et al. 124-color super-resolution imaging by engineering DNA-PAINT blinking kinetics[J]. Nano Letters, 2019, 19(4): 2641-2646.

[61] Strauss S, Nickels P C, Strauss M T, et al. Modified aptamers enable quantitative sub-10-nm cellular DNA-PAINT imaging[J]. Nature Methods, 2018, 15(9): 685-688.

[62] Pereira A, Sousa M, Almeida A C, et al. Coherent-hybrid STED: high contrast sub-diffraction imaging using a bi-vortex depletion beam[J]. Optics Express, 2019, 27(6): 8092-8111.

[63] 蔡欢庆, 匡翠方, 王轶凡, 等. 基于宽场随机荧光漂白的超分辨显微方法[J]. 中国激光, 2013, 40(11): 1110001.

    Cai H Q, Kuang C F, Wang Y F. et al . Superresolution microscopy imaging based on wide-field stochastic fluorescent bleaching[J]. Chinese Journal of Lasers, 2013, 40(11): 1110001.

[64] Wang Y F, Kuang C F, Cai H Q, et al. Sub-diffraction imaging with confocal fluorescence microscopy by stochastic photobleaching[J]. Optics Communications, 2014, 312: 62-67.

[65] Simonson P D, Rothenberg E, Selvin P R. Single-molecule-based super-resolution images in the presence of multiple fluorophores[J]. Nano Letters, 2011, 11(11): 5090-5096.

[66] 曾志平. 基于荧光随机涨落的超分辨显微成像[J]. 中国激光, 2018, 45(3): 0307009.

    Zeng Z P. Fluorescence fluctuation-based super-resolution nanoscopy[J]. Chinese Journal of Lasers, 2018, 45(3): 0307009.

[67] Eilers Y, Ta H S, Gwosch K C, et al. MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(24): 6117-6122.

[68] Gwosch K C, Pape J K, Balzarotti F, et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells[J]. Nature Methods, 2020, 17: 217-224.

[69] Taraska J W. A primer on resolving the nanoscale structure of the plasma membrane with light and electron microscopy[J]. The Journal of General Physiology, 2019, 151(8): 974-985.

[70] Mund M, Kaplan C, Ries J. Localization microscopy in yeast[J]. Methods in Cell Biology, 2014, 123: 253-271.

[71] Li H L, Vaughan J C. Switchable fluorophores for single-molecule localization microscopy[J]. Chemical Reviews, 2018, 118(18): 9412-9454.

[72] 桂丹, 商明涛, 黄振立. 基于sCMOS相机的超分辨定位成像技术[J]. 中国激光, 2018, 45(2): 0207016.

    Gui D, Shang M T, Huang Z. Super-resolution localization microscopy with scientific complementary metal oxide semiconductor camera[J]. Chinese Journal of Lasers, 2018, 45(2): 0207016.

[73] Pittet MJ, Garris CS, Arlauckas SP, et al., 2018, 3(27): eaaq0491.

[74] Dersch S, Graumann P L. The ultimate picture: the combination of live cell superresolution microscopy and single molecule tracking yields highest spatio-temporal resolution[J]. Current Opinion in Microbiology, 2018, 43: 55-61.

[75] Wang X H, Li X J, Deng X, et al. Single-molecule fluorescence imaging to quantify membrane protein dynamics and oligomerization in living plant cells[J]. Nature Protocols, 2015, 10(12): 2054-2063.

[76] Sengupta P, van Engelenburg S B, Lippincott-Schwartz J. Superresolution imaging of biological systems using photoactivated localization microscopy[J]. Chemical Reviews, 2014, 114(6): 3189-3202.

李雨竹, 李传康, 郝翔, 刘旭, 匡翠方. 基于单分子定位成像技术的研究及展望[J]. 激光与光电子学进展, 2020, 57(24): 240002. Yuzhu Li, Chuankang Li, Xiang Hao, Xu Liu, Cuifang Kuang. Review and Prospect for Single Molecule Localization Microscopy[J]. Laser & Optoelectronics Progress, 2020, 57(24): 240002.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!