作者单位
摘要
苏州科技大学 物理科学与技术学院 江苏省微纳热流技术与能源应用重点实验室, 江苏 苏州215009
本文以与光腔耦合的电控量子点分子为研究对象,分析了量子点的时域量子关联退相干特性。基于可测量的Leggett-Garg不等式,研究光电混合系统的时域量子关联。测量不等式的违背性可以作为动态演化过程中时域量子关联的存在证据。调控电子隧穿强度和光腔频率失谐有利于增强时域量子关联。发现,在空间量子关联值为零的区域内,不存在时域量子关联。当空间量子关联值较高时,量子点动力学演化存在Leggett-Garg不等式测量的最大程度违背现象。与之相反,在时域量子关联为零的时间段内,空间量子关联仍然存在。本文采用开放量子系统动力学方法研究环境效应对时域量子关联的影响。量子点的自发衰变和光腔泄漏抑制了时域量子关联。这些结果可用于混合量子系统的量子信息处理技术。
时域量子关联 量子点分子 Leggett-Garg不等式 混合量子系统 temporal quantum correlation quantum dots molecule Leggett-Garg inequalities hybrid quantum systems 
中国光学
2023, 16(5): 1206
作者单位
摘要
1 浙江大学光电科学与工程学院,浙江 杭州 310027
2 之江实验室智能感知研究中心,浙江 杭州 311100
自适应光学是一种校正波前误差的技术,在地基望远镜、生物成像、人眼像差校正、激光通信等领域中已经有了广泛的应用。与此同时,深度学习技术的快速发展为各个领域带来了全新的方法。为了进一步提升传统自适应光学系统的性能,研究者将自适应光学技术与深度学习相结合,从实时性、抗噪声干扰能力等角度对已有自适应光学系统进行了改进。首先对目前常用的人工神经网络架构进行了介绍,然后详细阐述了近五年深度学习与自适应光学技术相结合的方法,最后对已有方法进行了总结,并对该技术未来的发展方向进行了展望。
激光光学 自适应光学 深度学习 人工神经网络 波前校正 
中国激光
2023, 50(11): 1101009
王玥颖 1,2刘旭 1,**郝翔 1,2,*
作者单位
摘要
1 浙江大学光电科学与工程学院,浙江 杭州 310027
2 浙江大学嘉兴研究院智能光电创新中心,浙江 嘉兴 314000
随着精密仪器制造和半导体加工产业的蓬勃发展,对微小结构表面形貌的观察和测量是现代科学研究的一个重要方向。激光扫描共聚焦显微成像技术因高分辨率、高信噪比和优秀的层切能力在三维表面形貌测量领域备受青睐。介绍共聚焦显微成像技术的基本原理,并对适用于三维表面形貌测量领域的共聚焦显微成像方法进行综述,包括共聚焦成像的不同扫描方法、不同探测手段及基于光谱的共聚焦成像技术。最后,对共聚焦显微成像技术未来的发展趋势进行展望。
共聚焦显微成像技术 三维表面形貌测量 扫描成像 轴向定位 
激光与光电子学进展
2023, 60(8): 0811007
作者单位
摘要
1 浙江大学 光电科学与工程学院 现代光学仪器国家重点实验室, 浙江 杭州 310027
2 之江实验室 智能芯片与器件研究中心, 浙江 杭州 311121
3 浙江大学 宁波研究院, 浙江 宁波 315100
4 山西大学 极端光学协同创新中心, 山西 太原 030006
荧光辐射差分显微成像是一种荧光染料普适性强、光毒性较低的超分辨成像技术。然而传统荧光辐射差分成像由于受其成像原理限制,系统复杂度较高、稳定性低且成像速度受限。针对上述问题,本文设计搭建了一套多色虚拟荧光差分显微系统,并对该系统的成像方法和参数间的制约关系进行了分析,基于已有的多色虚拟荧光辐射差分显微术原理,进一步考虑了信噪比和背景噪声等的影响,建立了可通过实验验证的虚拟荧光辐射差分显微成像模型。实验表明,本系统与方法具有结构简单、背景去噪能力强、荧光染料普适性强以及光毒性低等特性,成像分辨率较共聚焦系统提升了1.9倍,成像速度较传统的荧光辐射差分显微系统提升一倍,在3个波长上均获得了良好的成像效果,并在生物细胞成像中得到实验验证。
荧光显微镜 超分辨成像 光子重组 荧光辐射差分显微术 fluorescence microscopy super-resolution imaging photon reassignment fluorescence emission difference microscopy 
中国光学
2022, 15(6): 1332
作者单位
摘要
超分辨显微镜是探测分子尺度的亚细胞结构的有力工具,为生物学研究提供了新的途径。由于许多生物学问题都可以通过分析不同细胞结构间的相互作用进行研究,因此近年来发展了一系列多色超分辨显微技术。本文从生物样品制备和光学系统改进两个角度,对已有的多色单分子定位显微技术进行了总结,简要概括了每种技术的基本原理,分析了每种技术的优缺点及适用范围,重点归纳了近5年通过光学系统改进提升多色单分子定位显微技术性能的各类方法。最后,对快速发展的多色单分子定位显微技术领域进行了展望。
光子学报
2022, 51(8): 0851517
作者单位
摘要
1 浙江大学 现代光学仪器国家重点实验室,浙江大学光电科学与工程学院,教育部光子学国际合作联合实验室,浙江 杭州 310027
2 浙江大学 浙江省先进微纳器件智能系统研究省重点实验室,浙江大学信息与电子工程学院,浙江 杭州 310027
3 杭州纳境科技有限公司,浙江 杭州 310012
传统光学透镜及光学系统基于光传播效应实现电磁波调控功能,其体积较大、不易集成。而超表面是由人工亚波长尺度单元构成的二维平面结构,由于其相对于传统透镜具有超薄的优势,并且可以实现对光场的任意调控,近年来在光学成像领域得到广泛研究和应用。本文阐述了超表面透镜的工作原理,分析了超表面成像透镜的单色像差和色像差成因以及对应的像质评价方法,之后综述了超表面成像透镜的研究现状及应用,最后总结了超表面在成像领域尚且存在的问题及其未来发展方向。超表面透镜便于集成、设计自由度高,有望在诸多应用领域取代传统成像器件,基于超表面的高效率、大视场、宽带、可重构可调谐成像器件将成为其未来重要发展方向。
超表面 成像 电磁波调控 像差 像质评价 metasurface imaging electromagnetic wave manipulation aberration image evaluation 
中国光学
2021, 14(4): 831
王潇 1†涂世杰 1†刘鑫 1赵悦晗 1[ ... ]郝翔 1,*
作者单位
摘要
1 浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州310027
2 浙江大学宁波技术研究所, 浙江 宁波315100
3 之江实验室, 浙江 杭州311121

超分辨显微成像技术是细胞生物学中研究细胞器结构、相互作用和蛋白质功能的强大工具,其具有突破光学衍射极限的分辨能力,从纳米尺度上为细胞生物学提供了新的分析手段,对生命科学相关领域具有重大意义。然而,受衍射极限的影响,超分辨显微镜的轴向分辨率相比于横向分辨率要更难以提高,这导致实现细胞结构亚百纳米分辨率的三维成像更为困难。从受激辐射损耗显微术和单分子定位显微术这两种主流技术出发,对目前存在的多种三维成像技术进行了原理介绍和特点分析,最后对其未来发展方向进行了展望。

显微 荧光成像 超分辨显微 三维成像 受激辐射损耗显微术 单分子定位显微术 
激光与光电子学进展
2021, 58(22): 2200001
刘鑫 1匡翠方 1,2刘旭 1,2郝翔 1,*
作者单位
摘要
1 浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
2 之江实验室智能感知研究中心, 浙江 杭州 311100
点扩散函数(PSF)是衡量显微镜成像性能的关键参数,传统显微成像技术中,PSF越接近理想的艾里斑,表明系统的成像性能越好。随着计算显微成像技术的发展,显微镜在各个方面的性能均得到了极大的提升,特别是对显微镜PSF的主动操控,能显著提高其成像分辨率和速度等性能。因此,从原理和方法上介绍了基于PSF工程的计算显微成像研究进展,并分析了该技术面临的主要问题与挑战,最后对该技术未来的发展方向进行了展望。
成像系统 计算成像 点扩散函数 衍射理论 编码孔径 
激光与光电子学进展
2021, 58(18): 1811008
张智敏 1黄宇然 1刘少聪 1匡翠方 1,2,3,*[ ... ]刘旭 1
作者单位
摘要
1 浙江大学光电科学与工程学院, 现代光学仪器国家重点实验室, 浙江 杭州 310027
2 浙江大学宁波研究院, 浙江 宁波 315100
3 山西大学极端光学协同创新中心, 山西 太原 030006
4 清华大学精密测试技术及仪器国家重点实验室, 北京 100084
5 上海电力学院, 上海 200090
本文提出了一种共路并行荧光辐射差分超分辨显微成像方法,利用单个空间光调制器(SLM)同时产生两个相位灰度图,对入射激光的水平偏振分量和垂直偏振分量同时进行调制,使得最终的会聚光场由错开的高斯实心光斑和空心光斑组成。在样品面上,利用错开的实心光斑和空心光斑同时对样品进行扫描,与此同时在探测端利用两个探测器同时收集错开光斑所激发的荧光信号,采用荧光辐射差分(FED)方法对采集的图像进行处理,就可以实现对样品的快速超分辨成像。与传统的并行荧光辐射差分超分辨显微术相比,本方法在保留了将成像速度提高一倍的优势的同时克服了非共路并行系统中不同器件引入的噪声、漂移对图像质量的影响,并简化了光路。实验结果表明所提共路并行荧光辐射差分超分辨显微成像方法具有良好的超衍射极限成像能力。
显微 荧光显微镜 快速超分辨成像 荧光辐射差分技术 共路并行探测 
中国激光
2021, 48(16): 1607002
郝翔 1杨青 1匡翠方 1,2刘旭 1,2,*
作者单位
摘要
1 浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
2 浙江大学宁波研究院, 浙江 宁波 315100
光学显微镜具有无损、样品友好、速度快等优点,一直是人类探索微观世界的主要手段。但是,由于受到衍射极限限制,长期以来,光学成像系统的分辨率最高仅能达到可见光半波长量级,逐渐成为科学技术发展的桎梏。对于荧光标记样品,可以利用荧光超分辨光学显微成像技术打破光学衍射极限,填补电子显微镜(约为1 nm)和普通可见光学显微镜(200~250 nm)之间的空缺。然而,对于大多数样品特别是非荧光标记样品而言,利用现有技术进行超分辨成像依旧存在相当难度。近年来,科研人员从合成孔径成像原理出发,提出了光学移频超分辨成像方法,开辟了光学超分辨成像的新思路。光学移频超分辨成像不拘泥于荧光非线性效应的限制,兼具非荧光标记样品以及荧光标记样品的超分辨成像能力,而且因为其成像速度快、样品普适性高和光毒性低等优点,在材料学、生物学和医学等领域展现了很好的应用前景。本文从原理和方法上详细综述了移频超分辨光学显微成像技术,并对未来发展方向进行了评述和展望。
成像系统 超分辨 移频 光场调制 
光学学报
2021, 41(1): 0111001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!