强激光与粒子束, 2019, 31 (8): 083101, 网络出版: 2019-07-25  

一种220 GHz分布作用速调管的高频系统模拟

RF system of a 220 GHz extended interaction klystron
作者单位
1 中国科学院 电子学研究所, 北京 101400
2 中国科学院大学, 北京 100039
摘要
对一种基于双排矩形波导慢波结构(SDRWS)结构的3腔EIK进行了详细计算机模拟计算,通过对基于SDRWS结构的EIK用输入输出腔的S11的模拟计算及对分布作用速调管用中间腔的本征频率的模拟计算,初步确定了EIK用输入输出腔及中间腔的结构参数,进而对EIK进行了 PIC 互作用模拟计算,结果表明:该EIK的3 dB工作频带为219.5~220.5 GHz,3 dB带宽为1 GHz,最大功率为456 W,最大增益为40.06 dB。在此基础上,通过调整中间腔的波导头宽度以进行参差调谐,用PIC互作用模型模拟计算研究了中间腔谐振频率对EIK整体性能的影响。结果表明,EIK的3 dB工作频带主要由输入输出腔的通频带决定,而中间腔的谐振频率也具有重要影响。当中间腔的谐振频率分别处于输入输出腔的通频带的低频端或高频端时,可以使EIK的3 dB工作频带向低频端或高频端得到一定程度展宽;当中间腔的谐振频率高于输入输出腔的通频带的高频端时,EIK的增益在其3 dB工作频带内较为平坦,EIK的输出信号在其3 dB工作频带内比较稳定,频谱的纯净程度较好。参差调谐的最终结果表明,当中间腔的波导头宽度为0.747 mm时,EIK获得了接近最优的性能,3 dB工作频带为219.5~220.0 GHz,3 dB带宽扩展到1.2 GHz,最大功率为630 W,相应的最大电子效率为11.3%,最大增益为47 dB。
Abstract
An extended interaction klystron (EIK), which is composed of an input cavity and an output cavity both based on 8 periods of staggered double rectangular waveguide structure (SDRWS) and an intermediate cavity based on 6 periods of SDRWS, is calculated in detail on computer. After calculating reflection coefficient S11of the input cavity and output cavity and the eigenmodes of the intermediate cavity, the structural parameters of the input cavity and output cavity and the intermediate cavity are determined, then PIC simulation is done to predict the EIK’s performance, the results show that the EIK has an 1 GHz 3 dB bandwidth (219.5-220.5 GHz), a 456 W maximum power and a 40.06 dB maximum gain. Furthermore, stagger tuning by adjusting the structural parameter a of the intermediate cavity is performed to analyse how a affects the EIK’s performances, and the results show that the 3 dB band of the EIK mainly depends on the passband of the input cavity and output cavity, it also depends on the resonant frequency of the intermediate cavity in some cases. When the resonant frequency of the intermediate cavity is located at the lower or higher ends of the passband of the input cavity and output cavity, the 3 dB band of the EIK may be extended to certain extent. Particularly, when the resonant frequency of the intermediate cavity is located at or beyond the higher ends of the passband of the input cavity and output cavity, it is verified that the EIK has steady output signal featuring with pure spectrum and flat gains over the 3 dB band. The final results of the stagger tuning show that , when the structural parameter a of the intermediate cavity is 0.747 mm, the EIK reaches almost the optimum performances, with an 1.2 GHz 3 dB bandwidth (219.5-220.7 GHz), a 630 W maximum power companied with a 11.3% efficiency, and a 47 dB maximum gain.
参考文献

[1] John H B, Richard J D, Colin D J, et al. Vacuum electronic high power terahertz sources[J]. IEEE Trans on Terahertz Science and Technology, 2011, 1(1):54-75.

[2] Albert R, Dave B, Mark H, et al. Sub-millimeter waves from a compact, low voltage extended interaction klystron[C]//Proc of IRMMW-THz. 2007:1-3.

[3] Mark H, Albert R, Peter H, et al. A compact, high power, sub-millimeter-wave extended interaction klystron[C]//Proc of IEEE International Vacuum Electronics Conference. 2008:297.

[4] Peter H, Albert R, Richard D, et al. Compact sources of high RF power for DNP applications[C]//Proc of IEEE International Vacuum Electronics Conference. 2014:221-222.

[5] Albert R, Mark H, Peter H, et al. Development of sub-millimeter high power compact EIKs for DNP and radar applications[C]//Proc of IEEE International Vacuum Electronics Conference. 2017:ID62.

[6] Richard D, Albert R, Peter H, et al. Design and fabrication of terahertz extended interaction klystrons[C]//Proc of IRMMW-THz. 2010:1-3.

[7] Richard D, Albert R, Peter H, et al. Fabrication techniques for a THz EIK[C]//Proc of IEEE International Vacuum Electronics Conference. 2010:181-182.

[8] 吴振华,张开春,刘盛纲.扩展互作用谐振腔的模拟分析[J].强激光与粒子束, 2007, 19(3):483-486.(Wu Zhenhua, Zhang Kaichun, Liu Shenggang. Simulation of extended interaction oscillator. High Power Laser and Particle Beams, 2007,19(3):483-486)

[9] Zhang Kaichun, Wu Zhenhua, Liu Shenggang. Study of an extended interaction oscillator with a rectangular reentrance coupled-cavity in Terahertz region[J]. J Infrared Milli Terahz Waves, 2009, 30:308-318.

[10] Zhu Xiaofang, Jin Xiaolin, Huang Lili, et al. Study of a W-band sheet-beam extended interaction klystron[C]//Proc of IEEE International Vacuum Electronics Conference. 2015:si0240.

[11] Zeng Zaojin, Zhou Lin, Li Wenjun, et al. Design and optimization of a W-band extended interaction klystron amplifier[C]//Proc of IEEE International Vacuum Electronics Conference. 2015:si0369.

[12] Gao Dongping, Zhang Zhaochuan, Ding Yaogen, et al. Design of a continuous wave Ka-band extended interaction klystron[C]//Proc of IEEE International Vacuum Electronics Conference. 2014:355-356.

[13] Chen Shuyuan, Ran Cunjun, Wang Yong. Equivalent circuit of multi-gap output cavity for sheet beam EIK[C]//Proc of IEEE International Vacuum Electronics Conference. 2014:347-348.

[14] Qu Zhaowei, Zhang Zhiqiang, Ding Yaogen, et al. Research progress of a W-band 100-watts extended interaction oscillator[C]//Proc of IEEE International Vacuum Electronics Conference. 2017:ID94.

[15] 王自成,唐伯俊,谢文球,等.0.22 THz高效率行波管的互作用计算[J].强激光与粒子束, 2016, 28:023101.(Wang Zicheng, Tang Bojun, Xie Wenqiu, et al. Calculation of interaction in 0.22 THz high efficiency traveling wave tube. High Power Laser and Particle Beams, 2016, 28:023101)

[16] 刘青伦,王自成,刘濮鲲,等.基于场匹配法的双排矩形栅慢波结构高频特性研究[J].物理学报, 2012, 61:244102.(Liu Qinglun, Wang Zicheng, Liu Pukun, et al. Analysis of high frequency characteristics of the double-grating rectangular waveguide slow-wave-structure based on the field match method. Acta Physica Sinica, 2012, 61:244102)

[17] 刘青伦,王自成,刘濮鲲.基于双排矩形波导慢波结构W波段宽频带行波管模拟研究[J].物理学报, 2012, 61:124101.(Liu Qinglun, Wang Zicheng, Liu Pukun. Simulation studies on W-band traveling-wave tube with double rectangular comb slow-wave structure. Acta Physica Sinica, 2012, 61:124101)

[18] 谢文球,王自成,罗积润,等.基于开槽单矩形栅和圆形电子注的W波段返波振荡器[J].物理学报, 2013, 62:158503.(Xie Wenqiu, Wang Zicheng, Luo Jirun, et al. Design and simulation of W-band BWO based on slotted single-grating and cylindrical beam. Acta Physica Sinica, 2013,62:158503)

[19] Liu Qinglun, Wang Zicheng, Liu Pukun, et al. A THz backward-wave oscillator based on a double-grating rectangular waveguide[J]. IEEE Transactions on Electron Devices, 2013, 60(4):1463-1468.

[20] 徐翱,胡林林,阎磊,等.0.22 THz折叠波导行波管部件设计与加工[J].强激光与粒子束, 2012, 24(9):2135-2140.(Xu Ao, Hu Linlin, Yan Lei, et al. Design and machining of components of 0.22 THz folded waveguide traveling wave tube. High Power Laser and Particle Beams, 2012, 24(9):2135-2140)

王自成, 曲兆伟, 尚新文, 曹林林, 唐伯俊, 肖刘. 一种220 GHz分布作用速调管的高频系统模拟[J]. 强激光与粒子束, 2019, 31(8): 083101. Wang Zicheng, Qu Zhaowei, Shang Xinwen, Cao Linlin, Tang Bojun, Xiao Liu1. RF system of a 220 GHz extended interaction klystron[J]. High Power Laser and Particle Beams, 2019, 31(8): 083101.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!