作者单位
摘要
3西安导引科技有限责任公司,陕西 西安 710076
脉冲宽度调制 (pulse width modulation,PWM) 驱动是现有伺服控制系统的关键构成,因此在直流电机前端对脉宽信号进行差模滤波与共模滤波尤为重要。以某光电惯性稳定平台WSA38M功放模块为标的搭建滤波电路,分析PWM驱动开关频率导致电机发热和产生电磁耦合干扰的原因,运用公式计算LC滤波电路的电气参数,并进行优化仿真。测试和电磁兼容实验结果表明:优化后的电路性能优良,尤其是在22 kHz~53 kHz频段对系统干扰较小,容易满足整体指标要求,为控制系统设计提供了可靠的依据。
应用光学
2022, 43(5): 859
作者单位
摘要
中国科学院 空天信息创新研究院, 北京 101400
为了计算高品质因数谐振腔的储能过程和泄能过程,将高品质因数谐振腔的输入膜片和输出结构分别建模为一个二端口网络和一个三端口网络,根据高品质因数谐振腔的信号流图,提出了一种基于递推的数值计算方法。用该方法设计了一个工作在2.92 GHz附近的基于BJ32波导的高品质因数谐振腔,给出了谐振腔的储能过程和泄能过程。当输入膜片开口宽度取20 mm、输出膜片开口宽度取60 mm时,计算得出的谐振频率为2.9198 GHz,饱和储能时间为2.6 μs,输出脉冲宽度6.82 ns,输出峰值增益为129.6,能量效率为0.169。
高品质因数谐振腔 储能过程 泄能过程 高功率微波 high quality factor resonant cavity storing process of energy dumping process of energy high power microwave 
强激光与粒子束
2021, 33(10): 103007
作者单位
摘要
1 中国科学院 空天信息创新研究院,北京 101400
2 中国科学院 信息工程研究所,北京 100093;中国科学院大学 网络空间安全学院,北京 100049
提出了一种新型周期永磁(PPM)聚焦系统,其中,每半个周期的这种PPM聚焦系统由1件极靴和5块永磁体共同组成,第1、第3、第5块永磁体与第2、第4块永磁体的极化方向相反,且任何相距半个周期的2块永磁体均具有相反的极化方向。采用MTSS2018对这种新型PPM聚焦系统的磁场进行了计算,结果表明新型PPM聚焦系统的轴线上磁感应强度Bz具有显著的第3次和第5次空间谐波,在过0点后能够更快上升到峰值,整体构型十分接近具有理想矩形分布的PPM系统。采用MTSS2018对G波段分布作用速调管(EIK)所需的电子枪进行了模拟计算,并采用上面计算的Bz对该电子注进行聚焦,获得了电子注电压为22 kV,电子注电流为215 mA的电子注,电子注最大半径为0.08 mm,满足G波段EIK的应用要求。计算中的峰值磁感应强度仅为1.2 $ \sqrt 2 $BB,说明新型PPM聚焦系统与传统PPM聚焦系统相比,可以在较低的峰值磁感应强度的条件下实现电子注的有效聚焦。
分布作用速调管 电子注 电子注通道 周期永磁 周期永磁聚焦系统 extended interaction klystron electron beam tunnel of electron beam periodical permanent magnet PPM focus system 
强激光与粒子束
2020, 32(6): 063002
作者单位
摘要
1 中国科学院 电子学研究所,北京 101400
2 中国科学院大学,北京 100039
采用计算机模拟的方法对一种基于双排矩形波导慢波结构(SDRWS)的340 GHz返波管进行详细研究。首先对返波管所需的电子枪和永磁聚焦系统进行计算机模拟,结果表明,永磁聚焦系统与电子枪相结合,能够产生并维持14~17 kV,43.4 mA的电子注和18~21 kV,56.1 mA的电子注,且电子注电压在14~21 kV之间时,电子注在慢波结构区域的最大半径小于0.08 mm,半径波动最大值为0.034 mm。利用所计算的电子注,对基于SDRWS的340 GHz返波管进行互作用计算,结果表明,当电子注电压在14~21 kV之间调谐时,输出电磁波在326~352.6 GHz之间,输出功率大于2 W。同时,SDRWS的电子注通道半径为0.09 mm,相对较大,降低了返波管的制造难度。
返波管 双排矩形波导慢波结构 永磁聚焦系统 粒子模拟 Backward Wave Tube Staggered Double Rectangular Waveguide Structure permanent magnet focus system particle-in-cell simulation 
太赫兹科学与电子信息学报
2020, 18(6): 967
作者单位
摘要
1 Key Laboratory of Science and Technology on High Power Microwave Sources and Technologies, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing0400, China
2 School of Electric,Electrical and Communicaion Engineering, University of Chinese Academy of Sciences, Beijing100039, China
对基于12个周期的交错双排矩形波导慢波结构(staggered double rectangular waveguide slow wave structure,简记为SDRWSWS)的单谐振腔94.5GHz分布作用振荡器(extended interaction oscillator, EIO)进行了计算机模拟,给出了通过计算机模拟确定谐振腔结构参数及电子注参数的方法和步骤。提出了“相位再同步”的高效率方法,将谐振腔中从电子注输入端数起的第5~6个周期的慢波结构的周期降低到原来的90%左右,改变了谐振腔中轴向电场强度的分布,使轴向电场强度在远离输出口一端相对降低,而在靠近输出口一端相对升高,有助于电子注的调制随着电子注的行进而加强;同时,使在靠近输出口一端的轴向电场强度的相位增大了51.6o,从而与电子注的空间电荷波的相位保持同步并从电子注提取更多能量。计算机模拟结果证实,采用该技术的分布作用振荡器的功率和电子效率都得到显著提高,改善最大的数值是原来的2倍以上。
分布作用振荡器 相位再同步技术 交错双排矩形波导慢波结构 电子效率 extended interaction oscillator phase re-synchronization technology staggered double rectangular waveguide slow wave structure electron efficiency 
红外与毫米波学报
2020, 39(2): 211
作者单位
摘要
1 中国科学院 电子学研究所, 北京 101400
2 中国科学院大学, 北京 100039
对一种基于双排矩形波导慢波结构(SDRWS)结构的3腔EIK进行了详细计算机模拟计算,通过对基于SDRWS结构的EIK用输入输出腔的S11的模拟计算及对分布作用速调管用中间腔的本征频率的模拟计算,初步确定了EIK用输入输出腔及中间腔的结构参数,进而对EIK进行了 PIC 互作用模拟计算,结果表明:该EIK的3 dB工作频带为219.5~220.5 GHz,3 dB带宽为1 GHz,最大功率为456 W,最大增益为40.06 dB。在此基础上,通过调整中间腔的波导头宽度以进行参差调谐,用PIC互作用模型模拟计算研究了中间腔谐振频率对EIK整体性能的影响。结果表明,EIK的3 dB工作频带主要由输入输出腔的通频带决定,而中间腔的谐振频率也具有重要影响。当中间腔的谐振频率分别处于输入输出腔的通频带的低频端或高频端时,可以使EIK的3 dB工作频带向低频端或高频端得到一定程度展宽;当中间腔的谐振频率高于输入输出腔的通频带的高频端时,EIK的增益在其3 dB工作频带内较为平坦,EIK的输出信号在其3 dB工作频带内比较稳定,频谱的纯净程度较好。参差调谐的最终结果表明,当中间腔的波导头宽度为0.747 mm时,EIK获得了接近最优的性能,3 dB工作频带为219.5~220.0 GHz,3 dB带宽扩展到1.2 GHz,最大功率为630 W,相应的最大电子效率为11.3%,最大增益为47 dB。
分布作用速调管 参差调谐 双排矩形波导慢波结构 宽频带 PIC模拟 extended interaction klystron stagger tuning staggered double rectangular waveguide structure broadband PIC simulation 
强激光与粒子束
2019, 31(8): 083101
作者单位
摘要
中国科学院 电子学研究所, 北京 101400
利用CST PIC计算了基于双排矩形波导慢波结构的W波段行波管的注波互作用,在采用10 kV,70 mA的电子注的条件下,在92~97 GHz范围内,输出功率大于35 W,增益大于30 dB,电子效率约为5%。即使在10 kV较低的电压下,双排矩形波导慢波结构的尺寸仍然较大,有利于降低制造难度。提出了一种基于电火花线切割的加工制造工艺,成功制造了双排矩形波导慢波结构部件。在92~97 GHz范围内对所需盒形窗和电子枪进行了计算机模拟,设计、加工了盒形窗和电子枪的相关零件,制造了相关部件。将慢波结构部件和输能窗部件组装起来进行了冷测,驻波比在90~100 GHz范围内小于2.067。
W波段行波管 双排矩形波导慢波结构 盒形窗 PIC 模拟 W band traveling wave tube staggered double rectangular waveguide structure box-shaped window PIC simulation 
强激光与粒子束
2018, 30(5): 053008
作者单位
摘要
1 中国科学院 电子学研究所, 北京 101400
2 中国科学院大学, 北京 100039
利用CST Microwave Studio 计算双排矩形梳状慢波结构的色散并据此确定了0.22 THz左右频段(D波段)行波管用慢波结构的尺寸参数。将相速再同步技术应用于基于双排矩形梳状慢波结构的D波段行波管中,用CST PIC模拟计算了4例具有不同周期构型的D波段行波管。结果证实:对于无集中衰减器的D波段行波管,在218~232 GHz范围内,相速再同步技术使得输出功率从10~13 W提高到19~28 W,电子效率从1.4%~2.2%提高到2.6%~3.9%; 对于具有集中衰减器D波段行波管,在218~232 GHz范围内,相速再同步技术使得输出功率从8~16.8 W提高到32~41 W,电子效率从1.5%~2.8%提高到4.4%~5.7%。此外,无论行波管有无集中衰减器,相速再同步技术都明显改善了行波管的增益平坦度。
D波段行波管 相速再同步技术 双排矩形梳状慢波结构 色散 PIC 模拟 D band traveling wave tube phase velocity re-synchronization technology staggered double rectangular gating dispersion PIC simulation 
强激光与粒子束
2016, 28(2): 023101
作者单位
摘要
1 中国科学院 电子学研究所, 北京 100190
2 中国科学院 研究生院, 北京 100190
提出了一种新的基于真空电子学的THz源——基于圆盘加载波导的THz分布作用振荡器(EIO),它由圆盘加载波导输入谐振腔、漂移管和输出腔构成。利用2.5维电磁仿真软件UNIPIC对其进行了模拟研究,结果表明慢波结构的长度、漂移管的长度和输出腔的半径对输出功率和频率产生显著影响。经过最优化设计,在注电压为24.85 kV、电流为20 mA的条件下,仿真得出其中心频率为755.5 GHz、峰值功率为1.322 5 W的THz波。
真空电子学 圆盘加载波导 THz源 分布作用振荡器 vacuum electronics disk-loaded waveguide THz source extended-interaction oscillator 
强激光与粒子束
2011, 23(3): 739
作者单位
摘要
1 中国科学院,电子学研究所,北京,100080
2 中国科学院,研究生院,北京,100080
对目前慢波结构的模拟计算中存在的问题进行了深入分析,并提出了新的计算耦合阻抗的方法.研究了圆波导梳状慢波结构基波的耦合阻抗,其值可以在较宽频带内大于1 Ω.该结构内孔径为波长的1/4~1/3,是同一频段螺旋线慢波结构的5倍左右,能容纳比螺旋线大25倍的电流,能够承受比螺旋线大25倍的平均功率.互作用计算表明采用这种慢波结构的行波管在Ka波段可获得的最高功率达170 kW.
圆波导 梳状慢波结构 耦合阻抗 行波管 
强激光与粒子束
2007, 19(11): 1891

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!