光子学报, 2016, 45 (4): 0406001, 网络出版: 2016-05-11  

空间激光通信移动平台的自抗扰视轴稳定控制

Optical Axis ADRC Stabilization of Free Space Optical Communication Based on Space Mobile Platform
曹阳 1,2,*刘世涛 1
作者单位
1 重庆理工大学 电子信息与自动化学院, 重庆 400054
2 电子科技大学 物理电子学院,成都 610054
摘要
分析空间激光通信移动平台角运动和框架偏转之间的速度耦合关系,给出克服移动平台角运动的视轴稳定方法,针对视轴稳定系统中存在的非线性、多干扰问题,应用自抗扰控制法对三轴视轴稳定系统进行分散独立控制,采用模糊理论对自抗扰控制器的相关参量进行自整定.仿真和模拟实验表明:在1 Hz条件下,相对于参量辨识控制法,模糊自抗扰控制法的抗扰动隔离度提高了7.4 dB;在模拟扫频实验条件下,将1~2 Hz与2~4 Hz的扰动实验区间进行比较,模糊自抗扰控制法的抗扰动隔离度下降仅2.2 dB.模糊自抗扰控制具有较好的快速响应性、较小的超调和频率适应性,能够满足系统稳态准确度的要求,并能克服平台角运动耦合、不确定性扰动问题.
Abstract
The velocity coupling relationship between the moving platform and the frame deflection was analyzed, optical axis stabilization method was deduced, and aiming at the non-linearity, multi-interference in optical axis stabilization, active disturbance rejection controller based on fuzzy reasoning was proposed to control three axis stabilization systems. Through software simulation and experiment: under1Hz disturbance, with respect to parameter identification method, anti-disturbance isolation degree based on active disturbance rejection controller is increased by 7.4 dB, in the experimental condition of the sweep frequency from 1~2 Hz to 2~4 Hz, the anti-disturbance isolation degree of the fuzzy auto disturbance rejection control method decrease only 2.2 dB. Fuzzy auto disturbance rejection controller has better fast response ,smaller super adjustment and frequency adaptability, also can overcome the platform angular motion and uncertainty disturbance.
参考文献

[1] RRUEGO I, GUERRERO H, S RODRIGUEZ, et al. OWLS: a ten-year history in optical wireless links for intra-satellite communications[J]. Selected Areas in Communications, 2009, 27(9): 1599-1611.

[2] TOYOSHIMA M, TAKENAKA H,SHOJI Y, et al. Results of Kirari optical communication demonstration experiments with NICT optical ground station (KODEN) aiming for future classical and quantum communications [J]. Acta Astronautica, 2012, 74(3): 40-49.

[3] BHATNAGA M, ARTI M. Performance analysis of hybrid satellite-terrestrial FSO cooperative system[J]. Photonics Technology Letters,2013, 25(22): 2197-2200.

[4] NARESH K, RANA D. Enhanced performance analysis of inter-aircraft optical-wireless communication (IAOWC) system [J]. Optic, 2014, 125(1): 486-488.

[5] LUNA R, BORAH D K, JONNALAGADDA R, et al. Experimental demonstration of a hybrid link for mitigating atmospheric turbulence effects in free-space optical communication [J]. Photonics Technology Letters, 2009, 21(17): 1196-1198.

[6] GRACE D, CAPSTICK M H, MOHORCIC M, et al. Integrating users into the wider broadband network via high altitude platforms[J]. Wireless Communications, 2005, 12(5): 98-105.

[7] KARAPANTAZIS S,PAVLIDOU F. Broadband communication via high-altitude platforms: a survey[J]. Communications Surveys & Tutorials, 2005, 7(1): 2-31

[8] 曹阳, 荣健, 张红民,等.机载激光通信终端的模糊变结构跟踪方法研究[J]. 光子学报,2014,43(8): 94-99.

    CAO Yang, RONG Jian, ZHANG Hong-min, et al. Fuzzy variable structure multiple-model tracking for airborne laser communication system[J]. Acta Photonica Sinica, 2014, 43(8): 94-99.

[9] 刘鹏, 王晓曼, 韩成,等. 空地激光通信系统中捕获子系统仿真[J].光子学报, 2014,43(2):98-103.

    LIU Peng, WANG Xiao-man, HAN Cheng, et al. Simulation of acquisition subsystem in space-ground optical communication system [J]. Acta Photonica Sinica, 2014, 43(2): 98-103.

[10] 刘云清, 姜会林, 佟首峰.大气激光通信中稳定跟踪技术研究[J].光子学报, 2011, 40(7):972-977.

    LIU Yun-qing, JIANG Hui-lin, TONG Shou-feng, et al. Stabilization tracking technology for atmospheric laser communication system [J]. Acta Photonica Sinica, 2011, 40(7): 972-977.

[11] 宋延嵩,佟首峰,姜会林,等.机载激光通信系统精跟踪单元变结构控制技术[J].红外与激光工程,2010,39(5): 934-938.

    SONG Yan-song, TONG Shou-feng, JIANG Hui-lin, et al. Variable structure control technology of the fine tracking assembly in airborne laser communication system[J]. Infrared & Laser Engineering, 2010, 39(5): 934-938.

[12] 左韬,艾勇,黄海波.空间光通信ATP系统的复合控制方法[J].红外与激光工程,2011,40(1): 107-111.

    ZUO Tao, AI Yong, HUANG Hai-bo, et al. Multiple control method of ATP system for space optical communication[J]. Infrared & Laser Engineering, 2011, 40(1): 107-111.

[13] 邱宝梅,万吉权,王建文.机载摄影稳定平台的自抗扰控制[J].光电工程, 2012,39(4): 21-26.

    QIU Bao-mei,WAN Ji-quan,WANG Jian-wen. Active disturbance rejection controller of the aerial photography stabilized platform[J]. Opto-Electronic Engineering, 2012, 39(4): 21-26.

[14] 李强,薛开,李霞. 三轴仿真转台设计及动力学耦合分析[J]. 机械设计,2012,29(5): 15-20.

    LI Q, XUE K, LI X. Design and dynamic coupling analysis of three aixmotion simulator[J]. Journal of Machine Design, 2012,29(5): 15-20.

[15] LEONARD F, MARTINI A, ABBA G. Robust nonlinear controls of model-scale helicopters under lateral and vertical wind gusts [J]. Control Systems Technology, 2012, 20(1): 154-163.

[16] 赖爱芳, 郭毓, 郑立君.航天器资态机动及稳定的自抗扰控制[J].控制理论与应用,2012, 29(3):401-406.

    LAI Ai-fang, GUO Yu, ZHENG Li-jun. Active disturbance rejection control for spacecraft attitude maneuver and stability[J]. Control Theory & Applications, 2012, 29(3): 401-406.

[17] 武雷,保宏,杜敬利,等.一种自抗扰控制器参量的学习算法[J]. 自动化学报,2014,40(3): 556-560.

    WU Lei, BAO Hong, DU Jing-Li, et al. Learning algorithm for parameters of automatic disturbances rejection controller [J]. Acta Automatica Sinica, 2014, 40(3): 556-560.

曹阳, 刘世涛. 空间激光通信移动平台的自抗扰视轴稳定控制[J]. 光子学报, 2016, 45(4): 0406001. CAO Yang, LIU Shi-tao. Optical Axis ADRC Stabilization of Free Space Optical Communication Based on Space Mobile Platform[J]. ACTA PHOTONICA SINICA, 2016, 45(4): 0406001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!