光学学报, 2017, 37 (9): 0901001, 网络出版: 2018-09-07   

基于腔衰荡光谱技术测量夜间大气中五氧化二氮 下载: 1042次

Measurement of Nitrogen Pentoxide in Nocturnal Atmospheric Based on Cavity Ring-Down Spectroscopy
作者单位
1 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 安徽工业大学数理科学与工程学院, 安徽 马鞍山 243032
3 安徽医科大学药学院, 安徽 合肥 230032
引用该论文

王丹, 胡仁志, 谢品华, 刘小燕, 李治艳, 刘厚通, 黄仙山, 王东, 赵光兴. 基于腔衰荡光谱技术测量夜间大气中五氧化二氮[J]. 光学学报, 2017, 37(9): 0901001.

Dan Wang, Renzhi Hu, Pinhua Xie, Xiaoyan Liu, Zhiyan Li, Houtong Liu, Xianshan Huang, Dong Wang, Guangxing Zhao. Measurement of Nitrogen Pentoxide in Nocturnal Atmospheric Based on Cavity Ring-Down Spectroscopy[J]. Acta Optica Sinica, 2017, 37(9): 0901001.

参考文献

[1] Brown S S, Stutzb J. Nighttime radical observations and chemistry[J]. Chemical Society Reviews, 2012, 41(19): 6405-6447.

    Brown S S, Stutzb J. Nighttime radical observations and chemistry[J]. Chemical Society Reviews, 2012, 41(19): 6405-6447.

[2] Aldener M, Brown S S, Stark H, loss mechanisms of NO3, et al. Journal of Geophysical Research, 2006, 111(D23): D23S73[J]. N2O5 in a polluted marine environment: Results from in situ measurements during New England Air Quality Study, 2002.

    Aldener M, Brown S S, Stark H, loss mechanisms of NO3, et al. Journal of Geophysical Research, 2006, 111(D23): D23S73[J]. N2O5 in a polluted marine environment: Results from in situ measurements during New England Air Quality Study, 2002.

[3] Allan B J, Carslaw N, Coe H, et al. Observations of the nitrate radical in the marine boundary layer[J]. Journal of Atmospheric Chemistry, 1999, 33(2): 129-154.

    Allan B J, Carslaw N, Coe H, et al. Observations of the nitrate radical in the marine boundary layer[J]. Journal of Atmospheric Chemistry, 1999, 33(2): 129-154.

[4] Riemer N, Vogel H, Vogel B, et al. 108(D4): ACH[J]. nitrate aerosol formation in the lower troposphere under photosmog conditions. Journal of Geophysical Research, 2003.

    Riemer N, Vogel H, Vogel B, et al. 108(D4): ACH[J]. nitrate aerosol formation in the lower troposphere under photosmog conditions. Journal of Geophysical Research, 2003.

[5] Geyer A, Alicke B, Konrad S, et al. Chemistry and oxidation capacity of the nitrate radical in the continental boundary layer near Berlin[J]. Journal of Geophysical Research, 2001, 106(D8): 8013-8025.

    Geyer A, Alicke B, Konrad S, et al. Chemistry and oxidation capacity of the nitrate radical in the continental boundary layer near Berlin[J]. Journal of Geophysical Research, 2001, 106(D8): 8013-8025.

[6] Platt U, Alicke B, Dubois R, et al. Free radicals and fast photochemistry during BERLIOZ[J]. Journal of Atmospheric Chemistry, 2002, 42(1): 359-394.

    Platt U, Alicke B, Dubois R, et al. Free radicals and fast photochemistry during BERLIOZ[J]. Journal of Atmospheric Chemistry, 2002, 42(1): 359-394.

[7] Wang S S, Shi C Z, Zhou B, et al. Observation of NO3 radicals over Shanghai, China[J]. Atmospheric Environment, 2013, 70: 401-409.

    Wang S S, Shi C Z, Zhou B, et al. Observation of NO3 radicals over Shanghai, China[J]. Atmospheric Environment, 2013, 70: 401-409.

[8] Wheeler M D, Newman S M. Orr-Ewing A J, et al. Cavity ring-down spectroscopy[J]. Journal of the Chemical Society, Faraday Transactions, 1998, 94(3): 337-351.

    Wheeler M D, Newman S M. Orr-Ewing A J, et al. Cavity ring-down spectroscopy[J]. Journal of the Chemical Society, Faraday Transactions, 1998, 94(3): 337-351.

[9] Chang W L, Bhave P, Brown S S, et al. Heterogeneous atmospheric chemistry, ambient measurements, and model calculations of N2O5: A review[J]. Aerosol Science and Technology, 2011, 45(6): 665-695.

    Chang W L, Bhave P, Brown S S, et al. Heterogeneous atmospheric chemistry, ambient measurements, and model calculations of N2O5: A review[J]. Aerosol Science and Technology, 2011, 45(6): 665-695.

[10] Stutz J, Alicke B, Ackermann R, et al. Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 1. Observations during the Texas Air Quality Study 2000[J]. Journal of Geophysical Research, 2004, 109(D16): D12306.

    Stutz J, Alicke B, Ackermann R, et al. Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 1. Observations during the Texas Air Quality Study 2000[J]. Journal of Geophysical Research, 2004, 109(D16): D12306.

[11] Dorn H P, Apodaca R L, Ball S M, et al. Intercomparison of NO3 radical detection instruments in the atmosphere simulation chamber SAPHIR[J]. Atmospheric Measurement Techniques, 2013, 6(5): 1111-1140.

    Dorn H P, Apodaca R L, Ball S M, et al. Intercomparison of NO3 radical detection instruments in the atmosphere simulation chamber SAPHIR[J]. Atmospheric Measurement Techniques, 2013, 6(5): 1111-1140.

[12] Vrekoussis M, Kanakidou M, Mihalopoulos N, et al. Role of the NO3 radicals in oxidation processes in the eastern Mediterranean troposphere during the MINOS campaign[J]. Atmospheric Chemistry and Physics, 2004, 4(1): 169-182.

    Vrekoussis M, Kanakidou M, Mihalopoulos N, et al. Role of the NO3 radicals in oxidation processes in the eastern Mediterranean troposphere during the MINOS campaign[J]. Atmospheric Chemistry and Physics, 2004, 4(1): 169-182.

[13] Wang D, Hu R, Xie P, et al. Diode laser cavity ring-down spectroscopy for in situ measurement of NO3 radical in ambient air[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 166: 23-29.

    Wang D, Hu R, Xie P, et al. Diode laser cavity ring-down spectroscopy for in situ measurement of NO3 radical in ambient air[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 166: 23-29.

[14] Matsumoto J, Kosugi N, Imai H, et al. Development of a measurement system for nitrate radical and dinitrogen pentoxide using a thermal conversion/laser-induced fluorescence technique[J]. Review of Scientific Instruments, 2005, 76(6): 064101.

    Matsumoto J, Kosugi N, Imai H, et al. Development of a measurement system for nitrate radical and dinitrogen pentoxide using a thermal conversion/laser-induced fluorescence technique[J]. Review of Scientific Instruments, 2005, 76(6): 064101.

[15] Langridge J M, Ball S M. Shillings A J L, et al. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection[J]. Review of Scientific Instruments, 2008, 79(12): 123110.

    Langridge J M, Ball S M. Shillings A J L, et al. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection[J]. Review of Scientific Instruments, 2008, 79(12): 123110.

[16] Wagner N L, Dubé W P, Washenfelder R A, et al. Diode laser-based cavity ring-down instrument for NO3, N2O5, NO, NO2 and O3 from aircraft[J]. Atmospheric Measurement Techniques, 2011, 4(2): 1227-1240.

    Wagner N L, Dubé W P, Washenfelder R A, et al. Diode laser-based cavity ring-down instrument for NO3, N2O5, NO, NO2 and O3 from aircraft[J]. Atmospheric Measurement Techniques, 2011, 4(2): 1227-1240.

[17] Kercher J P, Riedel T P, Thornton J A. Chlorine activation by N2O5: Simultaneous, in situ detection of ClNO2 and N2O5 by chemical ionization mass spectrometry[J]. Atmospheric Measurement Techniques, 2009, 2: 119-151.

    Kercher J P, Riedel T P, Thornton J A. Chlorine activation by N2O5: Simultaneous, in situ detection of ClNO2 and N2O5 by chemical ionization mass spectrometry[J]. Atmospheric Measurement Techniques, 2009, 2: 119-151.

[18] Brown S S, Stark H, Ravishankara A R. Cavity ring-down spectroscopy for atmospheric trace gas detection: Application to the nitrate radical (NO3)[J]. Applied Physics B, 2002, 75(2/3): 173-182.

    Brown S S, Stark H, Ravishankara A R. Cavity ring-down spectroscopy for atmospheric trace gas detection: Application to the nitrate radical (NO3)[J]. Applied Physics B, 2002, 75(2/3): 173-182.

[19] Odameankrah C A, Osthoff H D. A compact diode laser cavity ring-down spectrometer for atmospheric measurements of NO3 and N2O5 with automated zeroing and calibration[J]. Applied Spectroscopy, 2011, 65(11): 1260-1268.

    Odameankrah C A, Osthoff H D. A compact diode laser cavity ring-down spectrometer for atmospheric measurements of NO3 and N2O5 with automated zeroing and calibration[J]. Applied Spectroscopy, 2011, 65(11): 1260-1268.

[20] 胡仁志, 王丹, 谢品华, 等. 二极管激光腔衰荡光谱测量大气NO3自由基[J]. 物理学报, 2014, 63(11): 110707.

    胡仁志, 王丹, 谢品华, 等. 二极管激光腔衰荡光谱测量大气NO3自由基[J]. 物理学报, 2014, 63(11): 110707.

    Hu Renzhi, Wang Dan, Xie Pinhua, et al. Diode laser cavity ring-down spectroscopy for atmospheric NO3 radical measurement[J]. Acta Physica Sinica, 2014, 63(11): 110707.

    Hu Renzhi, Wang Dan, Xie Pinhua, et al. Diode laser cavity ring-down spectroscopy for atmospheric NO3 radical measurement[J]. Acta Physica Sinica, 2014, 63(11): 110707.

[21] 王丹, 胡仁志, 谢品华, 等. 腔衰荡光谱技术中衰荡时间的准确快速提取[J]. 光谱学与光谱分析, 2014, 34(10): 2845-2850.

    王丹, 胡仁志, 谢品华, 等. 腔衰荡光谱技术中衰荡时间的准确快速提取[J]. 光谱学与光谱分析, 2014, 34(10): 2845-2850.

    Wang Dan, Hu Renzhi, Xie Pinhua, et al. Fast and accurate extraction of ring-down time in cavity ring-down spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(10): 2845-2850.

    Wang Dan, Hu Renzhi, Xie Pinhua, et al. Fast and accurate extraction of ring-down time in cavity ring-down spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(10): 2845-2850.

[22] 姜亚军, 赵建林, 杨德兴. 光腔衰荡光谱法中衰荡时间的优化提取[J]. 光子学报, 2009, 38(7): 1740-1745.

    姜亚军, 赵建林, 杨德兴. 光腔衰荡光谱法中衰荡时间的优化提取[J]. 光子学报, 2009, 38(7): 1740-1745.

    Jing Yajun, Zhao Jianlin, Yang Dexing. Optimized extraction of ring-down time in cavity ring-down spectroscopy[J]. Acta Photonica Sinica, 2009, 38(7): 1740-1745.

    Jing Yajun, Zhao Jianlin, Yang Dexing. Optimized extraction of ring-down time in cavity ring-down spectroscopy[J]. Acta Photonica Sinica, 2009, 38(7): 1740-1745.

[23] Osthoff H D, Pilling M J, Ravishankara A R, et al. Temperature dependence of the NO3 absorption cross-section above 298 K and determination of the equilibrium constant for NO3+NO2?N2O5 at atmospherically relevant conditions[J]. Physical Chemistry Chemical Physics, 2007, 9(43): 5785-5793.

    Osthoff H D, Pilling M J, Ravishankara A R, et al. Temperature dependence of the NO3 absorption cross-section above 298 K and determination of the equilibrium constant for NO3+NO2↔N2O5 at atmospherically relevant conditions[J]. Physical Chemistry Chemical Physics, 2007, 9(43): 5785-5793.

[24] Yokelson R J, Burkholder J B, Fox R W, et al. Temperature dependence of the NO3 absorption spectrum[J]. Journal of Physical Chemistry, 1994, 98(50): 13144-13150.

    Yokelson R J, Burkholder J B, Fox R W, et al. Temperature dependence of the NO3 absorption spectrum[J]. Journal of Physical Chemistry, 1994, 98(50): 13144-13150.

[25] Dubé W P, Brown S S, Osthoff H D, et al. Aircraft instrument for simultaneous, in situ measurements of NO3 and N2O5 via cavity ring-down spectroscopy[J]. Review of Scientific Instruments, 2006, 77(3): 034101.

    Dubé W P, Brown S S, Osthoff H D, et al. Aircraft instrument for simultaneous, in situ measurements of NO3 and N2O5 via cavity ring-down spectroscopy[J]. Review of Scientific Instruments, 2006, 77(3): 034101.

[26] Atkinson R, Baulch D L, Cox R A, et al. Evaluated kinetic and photochemical data for atmospheric chemistry: part I - gas phase reactions of Ox, HOx, NOx and SOx species[J]. Atmospheric Chemistry and Physics, 2004, 4(6): 1461-1738.

    Atkinson R, Baulch D L, Cox R A, et al. Evaluated kinetic and photochemical data for atmospheric chemistry: part I - gas phase reactions of Ox, HOx, NOx and SOx species[J]. Atmospheric Chemistry and Physics, 2004, 4(6): 1461-1738.

[27] Burkholder J B, Talukdar R K. Temperature dependence of the ozone absorption spectrum over the wavelength range 410 to 760 nm[J]. Geophysical Research Letters, 1994, 21(7): 581-584.

    Burkholder J B, Talukdar R K. Temperature dependence of the ozone absorption spectrum over the wavelength range 410 to 760 nm[J]. Geophysical Research Letters, 1994, 21(7): 581-584.

[28] Voigt S, Orphal J, Burrows J P. The temperature and pressure dependence of the absorption cross-sections of NO2 in the 250-800 nm region measured by Fourier-transform spectroscopy[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 149(1/2/3): 1-7.

    Voigt S, Orphal J, Burrows J P. The temperature and pressure dependence of the absorption cross-sections of NO2 in the 250-800 nm region measured by Fourier-transform spectroscopy[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 149(1/2/3): 1-7.

[29] Rothman L S, Gordon I E, Barbe A, et al. The HITRAN 2008 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110(9/10): 533-572.

    Rothman L S, Gordon I E, Barbe A, et al. The HITRAN 2008 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110(9/10): 533-572.

[30] 胡仁志, 王丹, 谢品华, 等. 二极管激光腔衰荡光谱技术测量环境大气NO2[J]. 光学学报, 2016, 36(2): 0230006.

    胡仁志, 王丹, 谢品华, 等. 二极管激光腔衰荡光谱技术测量环境大气NO2[J]. 光学学报, 2016, 36(2): 0230006.

    Hu Renzhi, Wang Dan, Xie Pinhua, et al. Diode laser cavity ring-down spectroscopy for atmospheric NO2 measurement[J]. Acta Optica Sinica, 2016, 36(2): 0230006.

    Hu Renzhi, Wang Dan, Xie Pinhua, et al. Diode laser cavity ring-down spectroscopy for atmospheric NO2 measurement[J]. Acta Optica Sinica, 2016, 36(2): 0230006.

王丹, 胡仁志, 谢品华, 刘小燕, 李治艳, 刘厚通, 黄仙山, 王东, 赵光兴. 基于腔衰荡光谱技术测量夜间大气中五氧化二氮[J]. 光学学报, 2017, 37(9): 0901001. Dan Wang, Renzhi Hu, Pinhua Xie, Xiaoyan Liu, Zhiyan Li, Houtong Liu, Xianshan Huang, Dong Wang, Guangxing Zhao. Measurement of Nitrogen Pentoxide in Nocturnal Atmospheric Based on Cavity Ring-Down Spectroscopy[J]. Acta Optica Sinica, 2017, 37(9): 0901001.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!