激光与光电子学进展, 2021, 58 (2): 0215008, 网络出版: 2021-01-11   

基于改进Census变换与梯度融合的立体匹配算法 下载: 989次

Stereo Matching Algorithm Based on Improved Census Transform and Gradient Fusion
作者单位
重庆邮电大学先进制造工程学院, 重庆 400065
引用该论文

萧红, 田川, 张毅, 魏博, 康家旗. 基于改进Census变换与梯度融合的立体匹配算法[J]. 激光与光电子学进展, 2021, 58(2): 0215008.

Hong Xiao, Chuan Tian, Yi Zhang, Bo Wei, Jiaqi Kang. Stereo Matching Algorithm Based on Improved Census Transform and Gradient Fusion[J]. Laser & Optoelectronics Progress, 2021, 58(2): 0215008.

参考文献

[1] Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1/2/3): 7-42.

[2] 程子怡, 卢荣胜, 毛翠丽. 光亮表面双目立体视觉三维形貌测量方法[J]. 激光与光电子学进展, 2020, 57(7): 071202.

    Cheng Z Y, Lu R S, Mao C L. Measurement method of three-dimensional shape of bright surface with binocular stereo vision[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071202.

[3] KolmogorovV, ZabihR. Computing visual correspondence with occlusions using graph cuts[C]∥Proceedings Eighth IEEE International Conference on Computer Vision, July 7-14, 2001, Vancouver, BC, Canada. New York: IEEE, 2001: 508- 515.

[4] VekslerO. Stereo correspondence by dynamic programming on a tree[C]∥2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 20-25, 2005, San Diego, CA, USA. New York: IEEE, 2005: 384- 390.

[5] Felzenszwalb P F, Huttenlocher D P. Efficient belief propagation for early vision[J]. International Journal of Computer Vision, 2006, 70(1): 41-54.

[6] Holland J H. Genetic algorithms[J]. American Scientist, 1992, 267(1): 66-72.

[7] Yang QX. A non-local cost aggregation method for stereo matching[C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, RI, USA. New York: IEEE, 2012: 1402- 1409.

[8] Hirschmuller H, Scharstein D. Evaluation of stereo matching costs on images with radiometric differences[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(9): 1582-1599.

[9] Pollard S B, Mayhew J E, Frisby J P. PMF: a stereo correspondence algorithm using a disparity gradient limit[J]. Perception, 1985, 14(4): 449-470.

[10] Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 650-656.

[11] Hosni A, Rhemann C, Bleyer M, et al. Fast cost-volume filtering for visual correspondence and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(2): 504-511.

[12] 孔令寅, 朱江平, 应三丛. 基于引导图像和自适应支持域的立体匹配[J]. 光学学报, 2020, 40(9): 0915001.

    Kong L Y, Zhu J P, Ying S C. Stereo matching based on guidance image and adaptive support region[J]. Acta Optica Sinica, 2020, 40(9): 0915001.

[13] 马瑞浩, 朱枫, 吴清潇, 等. 基于图像分割的稠密立体匹配算法[J]. 光学学报, 2019, 39(3): 0315001.

    Ma R H, Zhu F, Wu Q X, et al. Dense stereo matching algorithm based on image segmentation[J]. Acta Optica Sinica, 2019, 39(3): 0315001.

[14] SteinF. Efficient computation of optical flow using the census transform[M] ∥Rasmussen C E, Bülthoff H H, Schölkopf B, et al. Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science. Cham: Springer, 2004, 3175: 79- 86.

[15] 周旺尉, 金文光. 一种新颖的自适应权重Census变换立体匹配算法[J]. 计算机工程与应用, 2016, 52(16): 192-197, 215.

    Zhou W W, Jin W G. Novel stereo matching algorithm for adaptive weight Census transform[J]. Computer Engineering and Applications, 2016, 52(16): 192-197, 215.

[16] ZhangK, Fang YQ, Min DB, et al. Cross-scale cost aggregation for stereo matching[EB/OL]. [2020-06-18].https: ∥arxiv.org/abs/1403. 0316.

[17] Min DB, Lu JB, Do MN. A revisit to cost aggregation in stereo matching: how far can we reduce its computational redundancy?[C]∥2011 International Conference on Computer Vision, November 6-13, 2011, Barcelona, Spain. New York: IEEE, 2011: 1567- 1574.

萧红, 田川, 张毅, 魏博, 康家旗. 基于改进Census变换与梯度融合的立体匹配算法[J]. 激光与光电子学进展, 2021, 58(2): 0215008. Hong Xiao, Chuan Tian, Yi Zhang, Bo Wei, Jiaqi Kang. Stereo Matching Algorithm Based on Improved Census Transform and Gradient Fusion[J]. Laser & Optoelectronics Progress, 2021, 58(2): 0215008.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!