Journal of Innovative Optical Health Sciences, 2020, 13 (4): 2050019, Published Online: Aug. 7, 2020  

A microvascular image analysis method for optical-resolution photoacoustic microscopy

Author Affiliations
1 School of Information Science and Engineering, Qufu Normal University, 80 Yantai Road North, Rizhao 276826, P. R. China
2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Institute of Biomedical and Health Engineering, 1068 Xueyuan Avenue, Shenzhen 518055, P. R. China
Abstract
Optical-resolution photoacoustic microscopy (OR-PAM) has been shown to be an excellent tool for high-resolution imaging of microvasculature, and quantitative analysis of the microvasculature can provide valuable information for the early diagnosis and treatment of various vascularrelated diseases. In order to address the characteristics of weak signals, discontinuity and small diameters in photoacoustic microvascular images, we propose a method adaptive to the microvascular segmentation in photoacoustic images, including Hessian matrix enhancement and the morphological connection operators. The accuracy of our vascular segmentation method is quantitatively evaluated by the multiple criteria. To obtain more precise and continuous microvascular skeletons, an improved skeleton extraction framework based on the multistencil fast marching (MSFM) method is developed. We carried out in vivo OR-PAM microvascular imaging in mouse ears and subcutaneous hepatoma tumor model to verify the correctness and superiority of our proposed method. Compared with the previous methods, our proposed method can extract the microvascular network more completely, continuously and accurately, and provide an effective solution for the quantitative analysis of photoacoustic microvascular images with many small branches.
References

[1] L. V. Wang, S. Hu, "Photoacoustic Tomography: In vivo imaging from organelles to organs," Science 335, 1458–1462 (2012).

[2] C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, L. V. Wang, "Label-free photoacoustic microscopy of cytochromes," J. Biomed. Opt. 18, 020504 (2013).

[3] K. Maslov, H. F. Zhang, S. Hu, L. V. Wang, "Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries," Opt. Lett. 33, 929–931 (2008).

[4] S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, J. M. Arbeit, "VEGF is essential for hypoxiainducible factor-mediated neovascularization but dispensable for endothelial sprouting," Proc. Natl. Acad. Sci. USA/PNAS 108, 13264–13269 (2011).

[5] B. Ning, M. J. Kennedy, A. J. Dixon, N. Sun, R. Cao, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, J. A. Hossack, S. Hu, "Simultaneous photoacoustic microscopy of microvascular anatomy, oxygen saturation, and blood flow," Opt. Lett. 40, 910–913 (2015).

[6] V. P. Nguyen, Y. Li, M. Aaberg, W. Zhang, X. Wang, Y. M. Paulus, "In vivo 3D imaging of retinal neovascularization using multimodal photoacoustic microscopy and optical coherence tomography imaging," J. Imaging 4, 150 (2018).

[7] R. Lin, J. Chen, H. Wang, M. Yan, W. Zheng, L. Song, "Longitudinal label-free optical-resolution photoacoustic microscopy of tumor angiogenesis in vivo," Quant. Imag. Med. Surg. 5, 23–29 (2015).

[8] Z. Guo, Z. Li, Y. Deng, S. L. Chen, "Photoacoustic microscopy for evaluating a lipopolysaccharide-induced inflammation model in mice," J. Biophoton. 12, e201800251 (2019).

[9] T. Jin, H. Guo, H. Jiang, B. Ke, L. Xi, "Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging," Opt. Lett. 42, 4434–4437 (2017).

[10] Z. Yang, J. Chen, J. Yao, R. Lin, J. Meng, C. Liu, J. Yang, X. Li, L. Wang, L. Song, "Multi-parametric quantitative microvascular imaging with opticalresolution photoacoustic microscopy in vivo," Opt. Exp. 22, 1500–1511 (2014).

[11] H. Zhao, G. Wang, R. Lin, X. Gong, L. Song, T. Li, W. Wang, K. Zhang, X. Qian, H. Zhang, L. Li, Z. Liu, C. Liu, "Three dimensional Hessian matrix based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo," J. Biomed. Opt. 23, 046006 (2018).

[12] Q. Li, L. Li, T. Yu, Q. Zhao, C. Zhou, X. Chai, "Vascular tree extraction for photoacoustic microscopy and imaging of cat primary visual cortex," J. Biophoton. 10, 780–791 (2017).

[13] Q. Zhao, R. Lin, C. Liu, J. Zhao, G. Si, L. Song, J. Meng, "Quantitative analysis on in vivo tumor-microvascular images from optical-resolution photoacoustic microscopy," J. Biophoton. 12, e201800421 (2019).

[14] R. Cao, J. Li, C. Zhang, Z. Zuo, S. Hu, "Photoacoustic microscopy of obesity-induced cerebrovascular alterations," Neuroimage 188, 369–379 (2019).

[15] N. Sun, B. Ning, K. M. Hansson, A. C. Bruce, S. A. Seaman, C. Zhang, M. Rikard, C. A. DeRosa, C. L. Fraser, M. Wagberg, R. Fritsche-Danielson, J. Wikstrom, K. R. Chien, A. Lundahl, M. Holtta, L. G. Carlsson, S. M. Peirce, S. Hu, "Modified VEGF-A mRNA induces sustained multifaceted microvascular response and accelerates diabetic wound healing," Sci. Rep. 8, 17509 (2018).

[16] R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, R. Wang, "Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system," Int. J. Biomed. Imaging 2012, 1–11 (2012).

[17] Y. Zhao, Y. Liu, X. Wu, S. P. Harding, Y. Zheng, "Retinal vessel segmentation: An e±cient graph cut approach with retinex and local phase," Plos ONE 10, e0122322 (2015).

[18] W. J. Youden, "Index for rating diagnostic tests," Cancer 3, 32–35 (1950).

[19] M. S. Hassouna, A. A. Farag, "Multistencils fast marching methods: A highly accurate solution to the eikonal equation on Cartesian domains," IEEE Trans. Pattern. Anal. 29, 1563–1574 (2007).

[20] M. Mirus, S. V. Tokalov, G. Wolf, J. Heinold, V. Prochnow, N. Abolmaali, "Noninvasive assessment and quantification of tumour vascularisation using MRI and CT in a tumour model with modifiable angiogenesis–An animal experimental prospective cohort study," Eur. Radiol. Exp. 1, 15 (2017).

[21] E. Bullitt, G. Gerig, S. M. Pizer, W. Lin, S. R. Aylward, "Measuring tortuosity of the intracerebral vasculature from MRA images," IEEE Trans. Med. Imaging 22, 1163–1171 (2003).

Jingxiu Zhao, Qian Zhao, Riqiang Lin, Jing Meng. A microvascular image analysis method for optical-resolution photoacoustic microscopy[J]. Journal of Innovative Optical Health Sciences, 2020, 13(4): 2050019.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!