Collection Of theses on high power laser and plasma physics, 2015, 13 (1): 953214, Published Online: May. 27, 2017  

Mechanism of internal modification in bulk borosilicate glass with picosecond laser pulses at high repetition rates

Author Affiliations
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Qinghe Road 390, Jiading District, Shanghai 201800, China
2 Fraunhofer-Institut für Lasertechnik, Steinbachstr. 15, 52074 Aachen, Germany
3 Nonlinear Dynamics of Laser Processing, RWTH Aachen University, Steinbachstr. 15, 52074 Aachen, Germany
Abstract
We present a numerical model of internal modification in bulk borosilicate glass by high repetition rate picosecond laser pulses. We study free-electron dynamics, nonlinear energy deposition and thermal conduction. The optical absorptivity and modification regions both have good agreements with the experimental results. The smooth outer zone is the molten region and the inner-structure formation is caused by high-density free-electrons generated by thermal ionization. Excitation, relaxation and accumulation of free-electron density in the focal volume are analyzed using different pulse shapes and a double-pulse train. The deposited energy distribution and modification zone are controlled by pulse shaping.
References

[1] Gattass, R. R. and Mazur, E., “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219-225 (2008).

[2] Schaffer, C. B., Brodeur, A., Garcia, J. F. and Mazur, E., “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93-95 (2001).

[3] Eaton, S. M., Zhang, H., Herman, P. R., Yoshino, F., Shah, L., Bovatsek, J. and Arai, A. Y., “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708-4716 (2005).

[4] Osellame, R., Chiodo, N., Maselli, V., Yin, A., Zavelani-Rossi, M., Cerullo, G., Laporta, P., Aiello, L., De Nicola, S., Ferraro, P., Finizio, A. and Pierattini, G., “Optical properties of waveguides written by a 26MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express 13, 612-620 (2005).

[5] Gattass, R. R., Cerami, L. R. and Mazur, E., “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14, 5279-5284 (2006).

[6] Eaton, S. M., Zhang, H., Ng, M. L., Li, J., Chen, W., Ho, S. and Herman, P. R., “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443-9458 (2008).

[7] Miese, C., Withford, M. J. and Fuerbach, A., “Femtosecond laser direct-writing of waveguide Bragg gratings in a quasi cumulative heating regime,” Opt. Express 19, 19542-19550 (2011).

[8] Tamaki, T., Watanabe, W. and Itoh, K., “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10460-1048 (2006).

[9] Miyamoto, I., Cvecek, K. and Schmidt, M., “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express 19, 10714-10727 (2011).

[10] Miyamoto, I., Cvecek, K., Okamoto, Y., Schmidt, M. and Helvajian, H., “Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses,” Opt. Express 19, 22961-22973 (2011).

[11] Sugioka, K., Iida, M., Takai, H. and Micorikawa, K., “Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train,” Opt. Lett. 36, 2734-2736 (2011).

[12] Wu, S., Wu, D., Xu, J., Hanada, Y., Suganuma, R., Wang, H., Makimura, T., Sugioka, K. and Midorikawa, K., “Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation,” Opt. Express 20, 28893-28905 (2012).

[13] Zimmermann, F., Richter, S., Doering, S., Tuennermann, A. and Nolte, S., “Ultrastable bonding of glass with femtosecond laser bursts,” Appl. Opt. 52, 1149-1154 (2013).

[14] Sakakura, M., Shimizu, M., Shimotsuma, Y., Miura, K. and Hirao, K., “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).

[15] Yoshino, T., Matsumoto, M., Ozeki, Y. and Itoh, K., “Energy-dependent temperature dynamics in femtosecond laser microprocessing clarified by Raman temperature measurement,” Proc. SPIE 8249, 82491D (2012).

[16] Hermans, M., Gottmann, J. and Schiffer, A., “In-situ diagnostics on fs-laser induced modification of glasses for selective etching,” Proc. SPIE 8244, 82440E (2012).

[17] Shimizu, M., Sakakura, M., Ohnishi, M., Shimotsuma, Y., Nakaya, T., Miura, K. and Hirao, K., “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108, 073533 (2010).

[18] Vogel, A., Novak, J., Hüttman, G. and Paltauf, G., “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015-1047 (2005).

[19] Sudrie, L., Couairon, A., Franco, M., Lamouroux, B., Prade, B., Tzorzakis, S. and Mysyrowicz, A., “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

[20] Arnold, C. L., Heisterkamp, A., Ertmer, W. and Lubatschowski, H., “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15, 10303-10317 (2007).

[21] Popov, K. I., McElcheran, C., Briggs, K., Mack, S. and Ramunno, L., “Morphology of femtosecond laser modification of bulk dielectrics,” Opt. Express 19, 271-282 (2011).

[22] Jiao, J. and Guo, Z., “Modeling of ultrashort pulsed laser ablation in water and biological tissues in cylindrical coordinates,” Appl. Phys. B 103, 195-205 (2011).

[23] Rayner, D. M., Naumov, A. and Corkum, P. B., “Ultrashort pulse non-linear optical absorption in transparent media,” Opt. Express 13, 3208-3217 (2005).

[24] Burakov, I. M., Bulgakova, N. M., Stoian, R., Mermillod-Blondin, A., Audouard, E., Rosenfeld, A., Husakou, A. and Hertel, I. V., “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).

[25] Sun, M., Eppelt, U., Russ, S., Hartmann, C., Siebert, C., Zhu, J. and Schulz, W., “Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses,” Opt. Express 21, 7858-7867 (2013).

[26] Kennedy, P. K., “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media: Part I – Theory,” IEEE J. Quant. Electron. 31, 2241-2249 (1995).

[27] Yoshino, F., Shah, L., Fermann, M., Arai, A. and Uehara, Y., “Micromachining with a high repetition rate femtosecond laser,” J. Laser Micro/Nanoeng. 3, 157-162 (2008).

[28] Schott D263 Material Information Sheet http://www.schott.com/advanced_optics/english/download/.

[29] Sun, Q., Jiang, H., Liu, Y., Zhou, Y., Yang, H. and Gong, Q., “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189-192 (2006).

[30] Gulley, J. R., Winkler, S. W., Dennis, W. M., Liebig, C. M. and Stoian, R., “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A 85, 013808 (2012).

[31] Shimizu, M., Sakakura, M., Ohnishi, M., Yamaji, M., Shimotsuma, Y., Hirao, K. and Miura, K., “Threedimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express 20, 934-940 (2012).

[32] Hoehm, S., Rosenfeld, A., Krueger, J. and Bonse, J., “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112, 014901 (2012).

[33] Englert, L., Rethfeld, B., Hagg, L., Wollenhaupt, M., Sarpe-Tudoran, C. and Baumert, T., “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855-17862 (2007).

[34] Nagata, T., Kamata, M. and Obara, M., “Optical waveguide fabrication with double pulse femtosecond lasers,” Appl. Phys. Lett. 86, 251103 (2005).

[35] Wortmann, D., Ramme, M. and Gottmann, J., “Refractive index modification using fs-laser double pulses,” Opt. Express 15, 10149-10153 (2007).

Mingying Sun, Urs Eppelt, Wolfgang Schulz, Jianqiang Zhu. Mechanism of internal modification in bulk borosilicate glass with picosecond laser pulses at high repetition rates[J]. Collection Of theses on high power laser and plasma physics, 2015, 13(1): 953214.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!