Author Affiliations
Abstract
1 School of Science, Shanghai Institute of Technology, Shanghai 201418, China
2 School of Material Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
3 Institute of Beyond Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
4 Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325024, China
Phosphor in glass (PiG) employing Ce:Y3Al5O12 (YAG)-doped boro-bismuthate glass via low-temperature co-sintering technology was successfully prepared, using Bi2O3-B2O3-ZnO glass as the base material. The photoluminescence (PL) of PiG co-sintered at times ranging from 20 min to 60 min at 700°C was investigated. As a result, the relative PL intensity of PiG under a reducing atmosphere of CO showed significant enhancement of about 7–14 times that under air atmosphere sintering for 20–50 min. The PL intensity decreased gradually with the co-sintering time, which may be due to the corrosion of the YAG lattice structure.
160.2750 Glass and other amorphous materials 160.4760 Optical properties 
Chinese Optics Letters
2019, 17(10): 101601
Author Affiliations
Abstract
1 Ningbo University of Finance and Economics, Ningbo 315175, China
2 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
3 School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
4 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
We report on the elemental redistribution behavior in oxyfluoride glasses with a high repetition rate near-infrared femtosecond laser. Elemental analysis by an electro-probe microanalyzer demonstrates that the redistributions of Ca2+ and Yb3+ ions change dramatically with pulse energy, which are quite different compared with previous reported results. Confocal fluorescence spectra of Yb3+ ions demonstrate that the luminescence intensity changes obviously with the elemental redistribution. The mechanism of the observed phenomenon is discussed. This observation may have potential applications in the fabrication of micro-optical devices.
160.5690 Rare-earth-doped materials 160.2750 Glass and other amorphous materials 160.4760 Optical properties 350.3390 Laser materials processing 
Chinese Optics Letters
2019, 17(6): 061601
Author Affiliations
Abstract
1 College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
2 Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
3 e-mail: sxucjlu@163.com
Er/Ho co-doped oxyfluoride germanosilicate glass and glass ceramics are prepared and compared. The results indicate that the glass consists of SiO4 and GeO4 structural units, while the network of the glass ceramics consists of SiO4, GeO4, and GeO6 units together with NaYF4 nanocrystals. The presence of multiple local structures in glass ceramics creates a range of dipole environments, which is beneficial to the broadening of 2.7 μm emission. Two other reasons are attributed to the broadening of 2.7 μm emission in glass ceramics: the energy-level splitting of Er3+ and the enhancement of the Ho3+:I65I75 transition in NaYF4 nanocrystals.
Rare-earth-doped materials Laser materials Glass and other amorphous materials Spectroscopy, infrared 
Photonics Research
2018, 6(4): 04000339
Author Affiliations
Abstract
1 Hubei Key Laboratory of Intelligent Wireless Communications, College of Electronics and Information Engineering, South-Central University for Nationalities, Wuhan 430074, China
2 King Abdullah University of Science and Technology (KAUST), Advanced Semiconductor Laboratory, Thuwal 23955-6900, Saudi Arabia
Connected-annular-rods photonic crystals (CARPCs) in both triangular and square lattices are proposed to enhance the two-dimensional complete photonic bandgap (CPBG) for chalcogenide material systems with moderate refractive index contrast. For the typical chalcogenide-glass–air system with an index contrast of 2.8:1, the optimized square lattice CARPC exhibits a significantly larger normalized CPBG of about 13.50%, though the use of triangular lattice CARPC is unable to enhance the CPBG. It is almost twice as large as our previously reported result [IEEE J. Sel. Top. Quantum Electron.22, 4900108 (2016)IJSQEN1077-260X10.1109/JSTQE.2015.2422997]. Moreover, the CPBG of the square-lattice CARPC could remain until an index contrast as low as 2.24:1. The result not only favors wideband CPBG applications for index contrast systems near 2.8:1, but also makes various optical applications that are dependent on CPBG possible for more widely refractive index contrast systems.
Photonic crystals Photonic bandgap materials Glass and other amorphous materials Bragg reflectors Polarization 
Photonics Research
2018, 6(4): 04000282
Author Affiliations
Abstract
The State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510641, China
Bismuth (Bi)-doped laser glasses and fiber devices have aroused wide attentions due to their unique potential to work in the new spectral range of 1 to 1.8 μm traditional laser ions, such as rare earth, cannot reach. Current Bi-doped silica glass fibers have to be made by modified chemical vapor deposition at a temperature higher than 2000°C. This unavoidably leads to the tremendous loss of Bi by evaporation, since the temperature is several hundred degrees Celsius higher than the Bi boiling temperature, and, therefore, trace Bi (50 ppm) resides within the final product of silica fiber. So, the gain of such fiber is usually extremely low. One of the solutions is to make the fibers at a temperature much lower than the boiling temperature of Bi. The challenge for this is to find a lower melting point glass, which can stabilize Bi in the near infrared emission center and, meanwhile, does not lose glass transparency during fiber fabrication. None of previously reported Bi-doped multicomponent glasses can meet the prerequisite. Here, we, after hundreds of trials on optimization over glass components, activator content, melting temperature, etc., find a novel Bi-doped gallogermanate glass, which shows good tolerance to thermal impact and can accommodate a higher content of Bi. Consequently, we successfully manufacture the germanate fiber by a rod-in-tube technique at 850°C. The fiber exhibits similar luminescence to the bulk glass, and it shows saturated absorption at 808 nm rather than 980 nm as the incident power becomes higher than 4 W. Amplified spontaneous emissions are observed upon the pumps of either 980 or 1064 nm from germanate fiber.
160.3380 Laser materials 160.2750 Glass and other amorphous materials 
Chinese Optics Letters
2017, 15(12): 121601
Author Affiliations
Abstract
1 Key Laboratory of In-Fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
2 Light-Matter Interactions Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
3 State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
4 e-mail: qjr@zju.edu.cn
5 Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
In this work, a hybrid structure consisting of a multicomponent germanate glass microsphere containing bismuth as a gain medium is proposed and presented. The bismuth-doped germanate glass microspheres were fabricated from a glass fiber tip with no precipitation of the bismuth metal. Coupling with a fiber taper, the bismuth-doped microsphere single-mode laser was observed to lase at around 1305.8 nm using 808 nm excitation. The low threshold of absorbed pump power at 215 μW makes this microlaser appealing for various applications, including tunable lasers for a range of purposes in telecommunication, biomedical, and optical information processing.
(140.3380) Laser materials (140.3945) Microcavities (160.2750) Glass and other amorphous materials. 
Photonics Research
2017, 5(6): 06000740
Author Affiliations
Abstract
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
Tb3+ and Sn2+ co-doped strontium phosphate glasses are prepared and their unique photoluminescence (PL) properties for deep UV excitation are investigated. With the co-doped Sn2+ ions, Tb3+ keeps the original PL behaviors under near UV excitation while its PL action for deep UV excitation is enhanced tremendously. PL emission and excitation spectra demonstrate the sensitization role of Sn2+ on the Tb3+ emissions for deep UV excitation that is associated with the strong deep UV absorption of Sn2+ for greatly enhancing the resonance of the Tb3+ excitation with the deep UV light source. The decay curves of Sn2+ and Tb3+ emissions for both singly doped and co-doped samples are single exponentially well fitted with almost the same emission lifetime (τ) values in the microsecond and millisecond time regimes, respectively, confirming that Sn2+ and Tb3+ act as an independent activator in the present phosphate glass matrix while an involved energy
160.2750 Glass and other amorphous materials 160.4670 Optical materials 160.4760 Optical properties 
Chinese Optics Letters
2016, 14(7): 071601
Author Affiliations
Abstract
1 College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
2 Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
3 email:sxucjlu@163.com
4 Institut für Physikalische Chemie, WWU Münster, Corrensstra?e 30, D 48149 Münster, Germany
5 Laboratory of Glasses and Ceramics, UMR 6226 CNRS-University of Rennes Cedex 135042, France
In this paper, we present the luminescent properties of Tm3+∕Ho3+ co-doped new glass. A series of silicategermanate glass was prepared by the conventional melt-quenching method. In the Tm3+∕Ho3+ co-doped silicategermanate glass, a strong emission of 2 μm originating from the Ho3+:5I7 → 5I8 transition can be observed under conventional 808 nm pumping. The characteristic temperatures, structure, and absorption spectra have been measured. The radiative properties of Ho33+ in the prepared glass were calculated. The emission cross section of Ho33+ ions transition can reach 4.78 × 10?21 cm2 around 2 μm, and the FWHM is as high as 153 nm. The energy transfer efficiency between Ho3+ and Tm3+ has a large value (52%), which indicates the Tm3+∕Ho3+ co-doped silicategermanate glass is a suitable candidate for the 2 μm laser. Moreover, the energy transfer mechanism between Tm3+ and Ho3+ ions was investigated.(61370049, 61308090, 61405182, 51172252, 51372235, 51472225); International Science & Technology Cooperation Program of China (2013DFE63070); Public TechnicalInternational Cooperation Project of the Science Technology Department of Zhejiang Province (2015c340009).
Laser materials Laser materials Optical materials Optical materials Glass and other amorphous materials Glass and other amorphous materials Spectroscopy Spectroscopy infrared infrared 
Photonics Research
2016, 4(6): 06000214
Author Affiliations
Abstract
1 Department of Photonics Engineering (DTU Fotonik), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
2 Saratov State University, Department of Physics, Astrakhanskaya 83, Saratov 410012, Russia
3 Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
Broadband (1.6–18 THz) terahertz time-domain spectroscopy (THz-TDS) and time-resolved terahertz spectroscopy (TRTS) were performed on a 54 μm thick chalcogenide glass (As30Se30Te40) sample with a two-color laser-induced air plasma THz system in transmission and reflection modes, respectively. Two absorption bands at 2–3 and 5–8 THz were observed. TRTS reveals an ultrafast relaxation process of the photoinduced carrier response, well described by a rate equation model with a finite concentration of mid-bandgap trap states for self-trapped excitons. The photoinduced conductivity can be well described by the Drude–Smith conductivity model with a carrier scattering time of 12–17 fs, and we observe significant carrier localization effects. A fast refractive index change was observed 100 fs before the conductivity reached its maximum, with 2 orders of magnitude larger amplitude than expected for the optically induced THz Kerr effect, indicating that free carriers are responsible for the transient index change.
Spectroscopy Spectroscopy terahertz terahertz Spectroscopy Spectroscopy ultrafast ultrafast Glass and other amorphous materials Glass and other amorphous materials Nonlinear optical materials Nonlinear optical materials Photoconductive materials Photoconductive materials 
Photonics Research
2016, 4(3): 03000A22
Author Affiliations
Abstract
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
Yb-doped silica glasses containing low, medium, and high content of OH are prepared through nanoporous glass sintering technology. High-OH sample exhibits better X-ray irradiation resistivity than low- and medium-OH samples. After irradiation, OH content of low- and medium-OH samples increases 37.5% and 11%, respectively; in contrast, OH content of high-OH sample decreases dramatically. The different OH content changes among the samples are discussed regarding the proposed inter-conversion reactions involving Si-H and Si-OH during the irradiation.
060.2290 Fiber materials 160.2750 Glass and other amorphous materials 160.5690 Rare-earth-doped materials 350.5610 Radiation 
Chinese Optics Letters
2015, 13(6): 060602

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!