Author Affiliations
Abstract
Applied Physics Department, Faculty of Science, Tafila Technical University, P. O. Box 179, Tafila, Jordan
We report a theoretical analysis of the electronic, optical, and mechanical properties of zinc-blende GaP semiconductor material. High-temperature impact on the interesting features has been reported. The temperature dependence of sound velocity and phonon frequencies of GaP has been determined. The pseudopotential technique has been used in our study. The current study can help in our comprehension of how temperature affects the electronic characteristics of GaP material. Our findings show generally a good accordance with the experiment. The prediction properties could be used in optoelectronic applications in the high-temperature range.
光电子快报(英文版)
2023, 19(1): 31
Author Affiliations
Abstract
Institute of New Energy Intelligence Equipment, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
In this paper, Cd1-xZnxS thin films were prepared by chemical bath deposition (CBD), and the effects of different zinc doping content on the morphological structure and optical properties of Cd1-xZnxS buffer layers are systematically discussed. The experimental results show that in the deposition process of different substrates, the crystal structure of the film is all hexagonal, and when the concentration of zinc sulfate (ZnSO4) precursor is varied from 0 to 0.025 M, the films are uniform and dense. With the increase of zinc content, the X-ray diffraction (XRD) peak of the films shifted behind that of CdS film (002). It showed 70% to 90% transmittance in the visible region and the optical band gap increased gradually. The band gap value of the films obtained ranged from 2.43 eV to 3.01 eV. It shows the potential feasibility of its application to photovoltaic devices.
光电子快报(英文版)
2023, 19(1): 25
Author Affiliations
Abstract
1 School of Science, Shanghai Institute of Technology, Shanghai 201418, China
2 Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
3 School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
4 Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325024, China
There are many strategies to maintain the excellent photoluminescence (PL) characteristics of perovskite quantum dots (QDs). Here, we proposed a facile and effective method to prepare cyan CsPb(Cl/Br)3/SiO2 nanospheres at room temperature. Cubic CsPb(Cl/Br)3 was obtained by adding a LiCl-H2O solution and anion exchange reaction. With (3-aminopropyl)triethoxysilane as an auxiliary agent, a QDs/SiO2 composite was extracted from a sol-gel solution by precipitate-encapsulation method. The transmission electron microscopy images and Fourier transform infrared spectra indicated the QDs were indeed embedded in silica substances. Besides, humidity stability and thermal stability show the composite possesses a great application value. Finally, cyan QDs@SiO2 powder has a high PL quantum yield of up to 84%; the stable cyan fluorescent powder does have great potential to play a key role in commercial full spectrum display.
quantum dots silicon dioxide CsPb3 lithium chloride cyan 
Chinese Optics Letters
2020, 18(7): 071601
Author Affiliations
Abstract
1 School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
2 State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
3 Department of Physics, Zhejiang Normal University, Jinhua 321004, China
4 Laboratory of Infrared Materials and Devices, Advanced Technology Research Institute, Ningbo University, Ningbo 315211, China
To introduce ordered nano-structures inside a transparent amorphous matrix with superior optical and mechanical properties bears scientific and technological importance, yet limited success has been achieved. Here, via simple melting-quenching and subsequent thermal activation, we report the successful preparation of transparent nano-structured glass-ceramics embedded in Sr2LuF7 nano-crystals (~26 nm), as evidenced by X-ray diffraction, transmission electron microscopy (TEM), and high resolution TEM. The successful incorporation of dopants into formed Sr2LuF7 nano-crystals with low phonon energy results in highly tunable blue–green photoemission, which depends on excitation wavelength, dopant type, and temperature. We found that Eu3+ and Eu2+ ions co-exist in this hybrid optical material, accompanied by the broadband blue emission of Eu2+ and sharp red emissions of Eu3+. A series of optical characterizations are summoned, including emission/excitation spectrum and decay curve measurement, to reveal the reduction mechanism of Eu3+ to Eu2+. Furthermore, near green–white photoemission is achieved via the enrichment of Tb3+/Eu3+ into crystallized Sr2LuF7 nano-crystals. The temperature-dependent visible photoemission reveals thermal activation energy increases with the precipitation of Sr2LuF7 nano-crystals in a glass matrix, suggesting better thermal stability of glass-ceramics than precursor glasses. These results could not only deepen the understanding of glass-ceramics but also indicate the promising potential of Eu3+/Tb3+-ions-doped Sr2LuF7 glass-ceramics for UV pumped white light emitting diodes (WLEDs) with good thermal stability.
glass-ceramics Sr2LuF7 nano-crystals WLED luminescent materials 
Chinese Optics Letters
2020, 18(5): 051601
Author Affiliations
Abstract
1 Electronic Information School, Wuhan University, Wuhan 430072, China
2 NOEIC, State Key Laboratory of Optical Communication Technologies and Networks, Wuhan Research Institute of Posts and Telecommunications, Wuhan 430074, China
3 Photonics Research Centre, Guilin University of Electronic Technology, Guilin 541004, China
4 Integrated Circuit Advanced Process Center, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
The design of a conventional zoom lens is always challenging because it requires not only sophisticated optical design strategy, but also complex and precise mechanical structures for system adjustment. Here, we propose a continuous-zoom lens consisting of two chiral geometric metasurfaces with dielectric nanobrick arrays sitting on a transparent substrate. The metalens can continuously vary the focal length by rotating either of the two metasurfaces around its optical axis without changing any other conditions. Due to the polarization dependence of the geometric metasurface, the positive and negative polarities are interchangeable in one identical metalens only by changing the handedness of the incident circularly polarized light, which can generate varying focal lengths ranging from ∞ to +∞ in principle.
160.3918 Metamaterials 160.4670 Optical materials 
Chinese Optics Letters
2019, 17(11): 111603
Author Affiliations
Abstract
1 Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China
2 Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
In this work, Er-doped aluminum nitride (AlN), Pr-doped AlN, and Er, Pr co-doped AlN thin films were prepared by ion implantation. After annealing, the luminescence properties were investigated by cathodoluminescence. Some new and interesting phenomena were observed. The peak at 480 nm was observed only for Er-doped AlN. However, for Er, Pr co-doped AlN, it disappeared. At the same time, a new peak at 494 nm was observed, although it was not observed for Er-doped AlN or Pr-doped AlN before. Therefore, the energy transfer mechanism between Er3+ and Pr3+ in AlN thin films was investigated in detail. Through optimizing the dose ratio of Er3+ with respect to Pr3+, white light emission with an International Commission on Illumination chromaticity coordinate (0.332, 0.332) was obtained. This work may provide a new strategy for realizing white light emission based on nitride semiconductors.
160.4760 Optical properties 160.5690 Rare-earth-doped materials 160.6000 Semiconductor materials 
Chinese Optics Letters
2019, 17(11): 111602
Author Affiliations
Abstract
College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
Ho3+/Yb3+: BaMoO4 phosphors with different concentrations were fabricated by a gel combustion method. The upconversion (UC) luminescence, intrinsic optical bistability, and the corresponding mechanisms were reported for the present system. The optical thermometric properties based on red (5F55I8) and green (5F4/5S25I8) emissions were studied. The sensing sensitivities could be tuned by manipulating the cooperative energy transfer process. The highest absolute sensitivity was 99 × 10 4 K 1 at 573 K, which is larger than that of many previous UC materials.
160.5690 Rare-earth-doped materials 120.6780 Temperature 280.4788 Optical sensing and sensors 
Chinese Optics Letters
2019, 17(11): 111601
Author Affiliations
Abstract
1 School of Science, Shanghai Institute of Technology, Shanghai 201418, China
2 School of Material Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
3 Institute of Beyond Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
4 Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325024, China
Phosphor in glass (PiG) employing Ce:Y3Al5O12 (YAG)-doped boro-bismuthate glass via low-temperature co-sintering technology was successfully prepared, using Bi2O3-B2O3-ZnO glass as the base material. The photoluminescence (PL) of PiG co-sintered at times ranging from 20 min to 60 min at 700°C was investigated. As a result, the relative PL intensity of PiG under a reducing atmosphere of CO showed significant enhancement of about 7–14 times that under air atmosphere sintering for 20–50 min. The PL intensity decreased gradually with the co-sintering time, which may be due to the corrosion of the YAG lattice structure.
160.2750 Glass and other amorphous materials 160.4760 Optical properties 
Chinese Optics Letters
2019, 17(10): 101601
Author Affiliations
Abstract
1 Key Laboratory of Photo-Electronic Materials, Ningbo University, Ningbo 315211, China
2 State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering and College of Physics, Jilin University, Changchun 130012, China
3 Department of Physics, Dalian Maritime University, Dalian 116026, China
Yb3+/Er3+ co-doped Na5Lu9F32 single crystals used as a spectral up-converter to improve the power conversion efficiency of perovskite solar cells are prepared via an improved Bridgman approach. Green and red up-conversion (UC) emissions under the excitation of near-infrared (NIR) bands of 900–1000 nm and 1400–1600 nm can be observed. The effectiveness of the prepared materials as a spectral converter is verified by the enhancement of power conversion efficiency of perovskite solar cells. The sample with a UC layer is 15.5% more efficient in converting sunlight to electricity compared to the UC layer-free sample due to the absorption of sunlight in the NIR range. The results suggest the synthesized Yb3+/Er3+ co-doped Na5Lu9F32 single crystals are suitable for enhancing the performance of perovskite solar cells.
160.4670 Optical materials 260.1180 Crystal optics 260.2510 Fluorescence 350.6050 Solar energy 
Chinese Optics Letters
2019, 17(9): 091601
Author Affiliations
Abstract
1 State Key Laboratory of Precision Spectroscopy, School of Physics and Material Science, East China Normal University, Shanghai 200062, China
2 Department of Physics, Shanghai University, Shanghai 200444, China
3 Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
The ultrafast spin dynamic of in-plane magnetized Fe/Pt films was investigated by terahertz emission spectroscopy. The amplitude of the emitted terahertz wave is proportional to the intensity of the exciting laser beams. Both the amplitude and polarity of the terahertz wave can be adjusted by modifying the external magnetic field. The dependency of the amplitude on external magnetic fields is coincident to the hysteresis loops of the sample. Also, the polarity of the terahertz wave is reversed, as the magnetization orientation is reversed. The super-diffusive transient spin current with an inverse spin Hall effect is attributed to the main mechanism of the terahertz emission.
160.3820 Magneto-optical materials 310.6845 Thin film devices and applications 320.2250 Femtosecond phenomena 
Chinese Optics Letters
2019, 17(8): 081601

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!