中国激光, 2016, 43 (10): 1001010, 网络出版: 2016-10-12   

全固态双共振KTPⅡ类相位匹配腔内和频578 nm黄激光器

All-Solid-State Doubly Resonant Intracavity Sum-Frequency 578 nm Yellow Laser with KTP Type Ⅱ Phase Matching
作者单位
1 中国科学院苏州生物医学工程技术研究所江苏省医用光学重点实验室, 江苏 苏州 215163
2 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
3 中国科学院大学, 北京100049
4 南京理工大学电子工程与光电技术学院, 江苏 南京 210094
摘要
提出了全固态双共振KTP Ⅱ类相位匹配腔内和频连续波578 nm黄光激光器,利用两种增益介质YbYAG和NdYAG分别得到1030 nm和1319 nm基频谱线,通过KTP Ⅱ类临界相位匹配进行腔内和频实现了578 nm黄激光输出。实验中输出578 nm黄激光,同时输出582 nm和频光成分。通过光谱分析,该现象是由于NdYAG晶体中对应能级跃迁为R2→X3的1338 nm谱线起振,并与1030 nm谱线产生了和频作用。当YbYAG和NdYAG的抽运功率分别为10.3 W和3.7 W时,得到55 mW的黄激光输出,并且在30 min内的功率稳定性优于4.7%。利用格兰棱镜测量了基频光与和频光的偏振特性,结果表明,对于两个各向同性的激光晶体而言,谐振腔结构以及和频晶体的方位角均影响其相应基频光的偏振特性,两者均可使基频光的偏振方向向有利于和频作用的偏振方向改变。
Abstract
An all-solid-state doubly resonant intracavity sum-frequency continuous-wave 578 nm yellow laser with KTP type Ⅱ phase matching is studied. Two kinds of gain media, YbYAG and NdYAG, are used to generate spectral lines of the fundamental frequency at 1030 nm and 1319 nm. The 578 nm yellow laser output is achieved by intracavity sum-frequency with KTP type Ⅱ critical phase matching. It is found in the experiment that besides the output of the yellow laser at 578 nm, an output of sum-frequency yellow laser at 582 nm is found at the same time. By spectral analysis, the phenomena are ascribed to the oscillation of 1338 nm from the transition of R2→X3 in NdYAG crystal and the sum-frequency generation (SFG) between the wavelengths of 1030 nm and 1338 nm. When the pump powers of YbYAG and NdYAG are 10.3 W and 3.7 W respectively, the yellow laser with the output power of 55 mW is obtained. The power stability of the output laser is better than 4.7% within 30 min. By using a Glan prism, the polarization characteristics of the fundamental frequency light and the sum-frequency light are measured. The results show that for the two isotropic laser crystals, both the resonator structure and the azimuth angle of the SFG crystal have influence on the polarization characteristics of the corresponding fundamental frequency light, and both of them can change the polarization direction of the fundamental frequency light to the direction which benefits to the sum-frequency process.
参考文献

[1] Lee H I, Lim Y Y, Kim B J, et al. Clinicopathologic efficacy of copper bromide plus/yellow laser (578 nm with 511 nm) for treatment of melasma in Asian patients[J]. Dermatol Surg, 2010, 36(6): 885-893.

[2] Hong F L, Inaba H, Hosaka K, et al. Doppler-free spectroscopy of molecular iodine using a frequency-stable light source at 578 nm[J]. Opt Express, 2009, 17(3): 1652-1659.

[3] Fukuda M, Kodama K, Yamamoto H, et al. Solid-state laser with newly synthesized pigment[J]. Dyes and Pigments, 2002, 53(1): 67-72.

[4] Zhang S J, Cheng Z X, Zhuo Z, et al. Yellow laser potential at 585 nm of monoclinic GdCa4O(BO3)3Dy crystal[J]. Physica Status Solidi (a), 2000, 181(2): 485-490.

[5] Bowman S R, O′Connor S, Condon N J. Diode pumped yellow dysprosium lasers[J]. Opt Express, 2012, 20(12): 12906-12911.

[6] Pask H M, Piper J A. Efficient all-solid-state yellow laser source producing 1.2 W average power[J]. Opt Lett, 1999, 24(21): 1490-1492.

[7] Lee W K, Park C Y, Yu D H, et al. Generation of 578 nm yellow light over 10 mW by second harmonic generation of an 1156 nm external-cavity diode laser[J]. Opt Express, 2011, 19(18): 17453-17461.

[8] Hosaka K, Inaba H J, Nakajima Y, et al. Evaluation of the clock laser for an Yb lattice clock using an optic fiber comb[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2010, 57(3): 606-612.

[9] Kantola E, Leinonen T, Ranta S, et al. High-efficiency 20 W yellow VECSEL[J]. Opt Express, 2014, 22(6): 6372-6380.

[10] Yang J M, Tan H M, Tian Y B, et al. Generation of a 578 nm yellow laser by the use of sum-frequency mixing in a branched cavity[J]. IEEE Photonics Journal, 2016, 8(1): 1500607.

[11] 姚建铨, 徐德刚. 全固态激光及非线性光学频率变换技术[M]. 北京: 科学出版社, 2007.

    Yao Jianquan, Xu Degang. All solid state laser and nonlinear optical frequency conversion technology[M]. Beijing: Science Press, 2007.

[12] 石顺祥, 陈国夫, 赵卫, 等. 非线性光学[M]. 2版. 西安: 西安电子科技大学出版社, 2012: 139-141.

    Shi Shunxiang, Chen Guofu, Zhao Wei, et al. Nonlinear optics[M]. 2nd ed. Xi′an: Xidian University Press, 2012: 139-141.

[13] Liu Q, Fu X, Gong M, et al. Effects of the temperature dependence of absorption coefficients in edge-pumped YbYAG slab lasers[J]. J Opt Soc Am B, 2007, 24(9): 2081-2089.

[14] Taira T, Tulloch W M, Byer R L. Modeling of quasi-three-level lasers and operation of cw YbYAG lasers[J].Appl Opt, 1997, 36(9): 1867-1874.

[15] Singh S , Smith R G, van Uitert L G. Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature[J]. Phys Rev B, 1974, 10(6): 2566-2572.

[16] Liu Q, Liu J H, Gong M. Dual-rod, 100 Hz, 388 mJ nanosecond NdYAG oscillator[J]. Appl Opt, 2011, 50(8): 1186-1189.

杨建明, 檀慧明, 田玉冰, 姚文明, 马刚飞, 鞠乔俊, 张龙, 陈建生, 高静. 全固态双共振KTPⅡ类相位匹配腔内和频578 nm黄激光器[J]. 中国激光, 2016, 43(10): 1001010. Yang Jianming, Tan Huiming, Tian Yubing, Yao Wenming, Ma Gangfei, Ju Qiaojun, Zhang Long, Chen Jiansheng, Gao Jing. All-Solid-State Doubly Resonant Intracavity Sum-Frequency 578 nm Yellow Laser with KTP Type Ⅱ Phase Matching[J]. Chinese Journal of Lasers, 2016, 43(10): 1001010.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!