光电子快报(英文版), 2015, 11 (5): 352, Published Online: Oct. 12, 2017  

Uncooled InAs0.09Sb0.91photoconductors with cutoff wavelength extended to 11.5 μm

Author Affiliations
1 College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
2 Huaxing Infrared Device Company, Xi’an 712099, China
3 Hamamatsu Photonics K. K., 5000 Hirakuchi, Hamakita 434-8601, Japan
Abstract
Uncooled InAsSb photoconductors were fabricated. The photoconductors were based on InAs0.09Sb0.91and InAs0.09Sb0.91thick epilayers grown on InAs substrates by melt epitaxy (ME). Ge immersion lenses were set on the photoconductors. The cutoff wavelength of InAs0.09Sb0.91detectors is obviously extended to 11.5 μm, and that of InAs0.09Sb0.95detectors is 8.3 μm. At room temperature, the peak detectivity of Dλp* at wavelength of 6.8 μm and modulation frequency of 1 200 Hz is 1.08×109cm·Hz1/2·W-1 for InAs0.09Sb0.91photoconductors, the detectivity D* at wavelength of 9 μm is 7.56×108cm·Hz1/2·W-1, and that at 11 μm is 3.92×108cm·Hz1/2·W-1. The detectivity of InAs0.09Sb0.91detectors at the wavelengths longer than 9 μm is about one order of magnitude higher than that of InAs0.09Sb0.95detectors, which rises from the increase of arsenic (As) composition in InAs0.09Sb0.91materials.
References

[1] A. M. Hoang, G. Chen, R. Chevallier, A. Haddadi and M. Razeghi, Applied Physics Letters 104, 251105 (2014).

[2] A. Haddadi, G. Chen, R. Chevallier, A. M. Hoang and M. Razeghi, Applied Physics Letters 105, 121104 (2014).

[3] H. S. Kim, O. O. Cellek, Zhi-Yuan Lin, Zhao-Yu He, Xin-Hao Zhao, Shi Liu, H. Li and Y.-H. Zhang, Applied Physics Letters 101, 161114 (2012).

[4] Y. Z. Gao, X. Y. Gong, H. Kan, M. Aoyama and T. Yamaguchi, Japanese of Journal of Applied Physics 38, 1939 (1999).

[5] Y. Z. Gao, H. Kan, F. S. Gao, X. Y. Gong and T. Yamaguchi, Journal of Crystal Growth 234, 85 (2002).

[6] Y. Gao, H. Kan and T. Yamaguchi, Crystal Research and Technology 35, 943 (2000).

[7] Y. Z. Gao, H. Kan, M. Aoyama and T. Yamaguchi,Japanese of Journal of Applied Physics 39, 2520 (2000).

[8] Yu-zhu Gao, Xiu-ying Gong, Guang-hui Wu, Yan-bin Feng, Takamitsu Makino, Hirofumi Kan, Tadanobu Koyama and Yasuhiro Hayakawa, International Journal of Minerals, Metallurgy, and Materials 20, 393 (2013).

[9] Yuzhu Gao, Xiuying Gong, Takamitsu Makino, Hirofumi Kan, Guanghui Wu, Yanbin Feng, Tadanobu Koyama and Yasuhiro Hayakawa, Advanced Materials Research 668, 664 (2013).

[10] GAO Yu-zhu, GONG Xiu-ying, LI Ji-jun, WU Guanghui, FENG Yan-bin, Takamitsu Makino and Hirofumi Kan, Journal of Optoelectronics·Laser 26, 825 (2015). (in Chinese)

[11] GAO Yu-zhu, GONG Xiu-ying, WU Guang-hui, FENG Yan-bin and FANG Wei-zheng, Journal of Optoelectronics ·Laser 21, 1751 (2010). (in Chinese)

[12] A. R. Denton and N. W. Ashcroft, Physical Review A 43, 3161 (1991).

[13] J. Piotrowski and A. Rogalski, Infrared Physics & Technology 46, 115 (2004).

GAO Yu-zhu, GONG Xiu-ying, ZHOU Ran, LI Ji-jun, FENG Yan-bin, Takamitsu Makino, Hirofumi Kan. Uncooled InAs0.09Sb0.91photoconductors with cutoff wavelength extended to 11.5 μm[J]. 光电子快报(英文版), 2015, 11(5): 352.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!