中国激光, 2011, 38 (4): 0403002, 网络出版: 2011-03-31  

激光冲击波驱动的新型微泵数值模拟

Simulation Study of a Novel Micropump Basing on Laser-Induced Shock Waves Actuated
作者单位
1 华中科技大学机械科学与工程学院, 湖北 武汉 430074
2 武汉光电国家实验室(筹), 湖北 武汉 430074
3 北京航空制造工程研究所, 北京 100024
摘要
针对传统微泵结构复杂、制备困难等不足,提出了一种新型的基于激光冲击波力学效应的微泵驱动方法,使用该方法设计的微泵结构简单、易于制造、成本低,有利于微型化及与微机电系统(MEMS)集成。通过研究激光冲击波的力学模型,设计了无阀型微泵,并计算出其耦合模态。验证了该驱动方法的可行性;通过流固耦合仿真研究了激光的频率、占空比、功率密度、光斑直径等参数对微泵流量的影响,并进一步分析了流量的稳定性。研究结果表明,功率密度和光斑直径是影响流量的主要因素,占空比为0.6时微泵流量最大,微泵稳定工作后各脉冲流量相差不超过5%。
Abstract
Aiming at the deficiency which traditional micropump structures are complex, and difficult to fabricate, a novel actuating approach is proposed basing on mechanical effect of laser-induced shock waves, micropump designed by this approach has the characteristics of simple structure, ease to manufacture, low cost and the benefit of miniaturization and integration with micro electro mechanical system (MEMS) system. The modal of surface pressure produced by laser induced shock waves is investigated. The valve-less micropump is designed, and its coupling modal is calculated. The feasibility of this actuated approach is validated. The influence of laser parameters (frequency, duty cycle, intensity, spot diameter) on flow rate is analyzed by the fluid-structure interaction simulation and the stability of flow rate is also investigated. The result reveals that laser intensity and spot diameter are the main influencing factors on the flow rate, flow rate maximizes when duty cycle is 0.6, the difference of flow rate at each single pulse is less than 5% at steady operation.
参考文献

[1] . Amirouche, Y. Zhou, T. Johnson. Current micropump technologies and their biomedical applications[J]. Microsyst. Technol., 2009, 15(5): 647-666.

[2] . J. Laser, J. G. Santiago. A review of micropumps[J]. J. Micromech. Microeng., 2004, 14(6): R35-64.

[3] . Cui, C. Liu, X. F. Zha. Study on a piezoelectric micropump for the controlled drug delivery system[J]. Microfluidics Nanofluidics, 2007, 3(4): 377-390.

[4] . Pan, E. Kai, M. Stay et al.. A magnetically driven PDMS micropump with ball check-valves[J]. J. Micromech. Microeng., 2005, 15(5): 1021-1026.

[5] . Lin, B. Yang, J. Xie et al.. Dynamic simulation of a peristaltic micropump considering coupled fluid flow and structural motion[J]. J. Micromech. Microeng., 2007, 17(2): 220-228.

[6] 石磊, 赵尚弘, 楚兴春 等. 大气呼吸模式纳秒脉冲钕玻璃激光推进实验与数值模拟[J]. 中国激光, 2010, 37(1): 100~104

    Shi Lei, Zhao Shanghong, Chu Xingchun et al.. Experimental and numerical study of air-breathing mode propulsion by solid Ndglass nanosecond pulse laser[J]. Chinese J. Lasers, 2010, 37(1): 100~104

[7] . Urech, T. Lippert, C. R. Phipps et al.. Polymers as fuel for laser-based microthrusters: An investigation of thrust, material, plasma and shockwave properties[J]. Appl. Surf. Sci., 2007, 253(19): 7646-7650.

[8] 王霄, 杨昆, 刘会霞 等. 激光驱动飞片加载金属箔板成形的加载机制[J]. 中国激光, 2009, 36(6): 1569~1574

    Wang Xiao, Yang Kun, Liu Huixia et al.. Loading mechanism of metal foil forming under laser driven flyer[J]. Chinese J. Lasers, 2009, 36(6): 1569~1574

[9] . . Experimental analysis of microscale laser shock processing on metallic material using excimer laser[J]. J. Mater. Sci. Technol., 2009, 25(6): 829-834.

[10] 李伟, 何卫锋, 李应红 等. 激光冲击强化对K417材料振动疲劳性能的影响[J]. 中国激光, 2009, 36(8): 2197~2201

    Li Wei, He Weifeng, Li Yinghong et al.. Effects of laser shock processing on vibration fatigue properties of K417 material[J]. Chinese J. Lasers, 2009, 36(8): 2197~2201

[11] . Fan, G. Song, F. Hussain. Simulation of a piezoelectrically actuated valveless micropump[J]. Smart Mater. Struct., 2005, 14(2): 400-405.

[12] . 平面型无阀微泵流固耦合模态分析[J]. 机械科学与技术, 2009, 28(12): 1604-1607.

    . . Modal analysis of liquid-solid coupling system of flat-walled valveless micropumps[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(12): 1604-1607.

[13] . R., Jr., Turner T. P., Harrison R. F. et al.. Impulse coupling to targets in vacuum by KrF, Hf, and CO2 single-pulse lasers[J]. J. Appl. Phys., 1988, 64(3): 1083-1096.

[14] 刘丽, 王声波, 吴鸿兴 等. 强激光诱导冲击波的实验研究[J]. 激光技术, 2007, 31(2): 134~136

    Liu Li, Wang Shengbo, Wu Hongxing et al.. Experimental study of high-power laser induced shock waves[J]. Laser Technology, 2007, 31(2): 134~136

[15] . D. Wu, C. Y. Huang, C. C. Liao. Fracture strength characterization and failure analysis of silicon dies[J]. Microelectron. Reliab., 2003, 43(2): 269-277.

程华旸, 熊良才, 姜洪, 车志刚. 激光冲击波驱动的新型微泵数值模拟[J]. 中国激光, 2011, 38(4): 0403002. Cheng Huayang, Xiong Liangcai, Jiang Hong, Che Zhigang. Simulation Study of a Novel Micropump Basing on Laser-Induced Shock Waves Actuated[J]. Chinese Journal of Lasers, 2011, 38(4): 0403002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!