光谱学与光谱分析, 2023, 43 (12): 3788, 网络出版: 2024-01-11  

用于快速检测铅离子的新型双发射碳点比率荧光探针

A Novel Dual Emission Carbon Point Ratio Fluorescent Probe for Rapid Detection of Lead Ions
作者单位
中南民族大学生物医学工程学院, 湖北 武汉 430074 中南民族大学认知科学国家民委重点实验室, 湖北 武汉 430074中南民族大学医学信息分析及肿瘤诊疗湖北省重点实验室, 湖北 武汉 430074
摘要
碳量子点 (CQDs) , 一类具有显著荧光性能的零维碳纳米材料, 是近年来生物传感应用研究的热点材料。 铅在化妆品、 工业污染等环境的来源众多, 吸入或误食吸附在颗粒物上的铅都会造成铅中毒, 从而引发各种疾病, 因此快速检测Pb2+含量在临床医学应用中极其重要。 基于CQDs的荧光特性, 提出了一种新型蓝、 红双发射比率荧光探针用于快速检测Pb2+含量, 采用透射电子显微镜、 荧光光谱等多种手段对探针的形态结构与性质进行表征、 检测和分析, 对Pb2+响应探针的光学特性以及应用可行性等进行了深入研究。 双发射碳点通过与自身的对比标定, 有效避免外界环境的干扰, 从而提高对被测物浓度的检测效果和灵敏度。 该探针采用水相合成, 步骤简单可重复性高, 且能够在短短几秒内对Pb2+实现快速响应, 检测过程无需借助大型仪器, 仅在紫外灯辅助下便可裸眼观测到比率探针荧光从蓝色到红色的变化, 可用于即时检测。 在符合目前医学应用的Pb2+浓度范围0~0.5 mg·L-1内, 两种荧光基团之间的荧光强度比IBCDs/IRCDs与其浓度具有良好的线性关系, R2=0.987 44, 检出限为0.013 6 mg·L-1。 选取Zn2+、 Fe3+、 K+等十种金属干扰离子对探针的荧光传感性能进行研究, 分析表明该探针对Pb2+具有良好的特异选择性, 并在不同pH环境和孵育时间下测量铅响应, 研究探针的稳定性。
Abstract
Carbon Quantum Dots (CQDs), a class of zero-dimensional carbon nanomaterials with significant fluorescence properties, have become popular in biosensing application research in recent years. Lead comes from many sources in environments such as cosmetics and industrial pollution, and inhalation or ingestion of lead adsorbed on particulate matter can cause lead poisoning, which can cause various diseases, so point of care detection of lead ion (Pb2+) content is extremely important in clinical medical applications. Based on the fluorescence characteristics of carbon quantum dots, a new blue and red dual-emission ratio fluorescent probe was proposed for rapid detection of lead ion content, and the morphological structure and properties of the probe were characterized, detected and analyzed by transmission electron microscope, fluorescence spectroscopy and other means, and the optical properties and application feasibility of Pb2+ response probe were studied in depth. The double emission carbon point is calibrated by comparison with itself to improve the detection effect and sensitivity of the analyte concentration, and effectively avoid the interference of the external environment. This proportional fluorescent uses aqueous synthesis, which is simple and reproducible, and can rapidly respond to Pb2+ in just a few seconds. The detection process can be observed naked-eye from blue to red with only an ultraviolet lamp, which can be used for clinical point-of-care detection. In the concentration range of Pb2+ in line with current medical applications of 0~0.5 mg·L-1, the fluorescence intensity IBCDs/IRCDs has a good linear relationship with concentration, R2=0.987 44, and the detection limit is 0.013 6 mg·L-1. The progressive fluorescence sensing of the probe with Zn2+, Fe3+, K+ and other ten metal interfering ions showed that the probe had a good specific selection for Pb2+. The lead response was measured at different pH environments and incubation times to investigate probe stability.
参考文献

[1] Ratnarathorn N, Chailapakul O, Dungchai W, et al. Talanta, 2015, 132: 613.

[2] Yuan Zhiqin, Peng Meihua, He Yan, et al. Chemical Communications, 2011, 47: 11981.

[3] Wang Yuedan, Zhou Zhou, Qing Xing, et al. Analytical and Bioanalytical Chemistry, 2016, 408(21): 5779.

[4] Fatima Ezzahra Salih, Aicha Ouarzane, Mama El Rhazi, et al. Arabian Journal of Chemistry, 2017, 10(5): 596.

[5] Thirumalai M, Kumar S N, Prabhakaran D, et al. Journal of Chromatography A, 2018, 1569: 62.

[6] Duan Hualing, Zhang Ningning, Gong Zhenbin, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016, 120: 63.

[7] Zhao Qin, Rong Xiaolong, Chen Li, et al. Talanta, 2013, 114: 110.

[8] Nerea De Acha, César Elosúa, Jesús M Corres, et al. Sensors, 2019, 19(3): 599.

[9] Zhang Xuejie, Wang Xiangtao, Qiu Hanhong, et al. Colloids and Surfaces B: Biointerfaces, 2020, 189: 110876.

[10] Vinayak Sahu, Fahmida Khan. Heliyon, 2020, 6(5): e03957.

[11] Wang Chuanxi, Wu Jiapeng, Jiang Kaili, et al. Sensors and Actuators B: Chemical, 2017, 238: 1136.

[12] He Guili, Shu Mengjun, Yang Zhi, et al. Applied Surface Science, 2017, 422: 257.

[13] Zubair M S H Khan, Raja Saifu Rahman, Shumaila, et al. Optical Materials, 2019, 91: 386.

[14] Sajad Moradi, Komail Sadrjavadi, Negin Farhadianb, et al. Journal of Molecular Liquids, 2018, 259: 284.

[15] Pramod Kumar Mehta, Jong yong Jeon, Ki Ryu, et al. Journal of Hazardous Materials, 2022, 427: 128161.

[16] Gao Zhikun, Hao Tongfan, Fang Qunxiang, et al. Methods and Applications in Fluorescence, 2021, 9(1): 015004.

[17] SHI Ji-yong, LI Wen-ting, HU Xue-tao, et al(石吉勇, 李文亭, 胡雪桃, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(12): 3925.

[18] Shu Yun, Dai Tao, Ye Qiuyu, et al. Journal of Fluorescence, 2021, 31(6): 1947.

[19] LIAN Jie, REN Yi-fei, YANG Rui-qin, et al(廉 洁, 任翼飞, 杨瑞琴, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(3): 804.

[20] Li Wenting, Hu Xuetao, Li Qian, et al. Food Chemistry, 2020, 320: 126623.

[21] Wang Haiqian, Yang Liang, Chu Suyun, et al. Analytical Chemistry, 2019, 91(14): 9292.

[22] Lu Hongzhi, Yu Chunwei, Xu Shoufang. Sensors and Actuators B: Chemical, 2019, 288: 691.

[23] Yeji Kim, Jongsung Kim. Optical Materials, 2020, 99: 109514.

[24] Xavier S S J, Siva G, Annarajb J, et al. Sensors and Actuators B: Chemical, 2018, 259: 1133.

易敏娜, 曹汇敏, 黎双娜丝, 张朱珊莹, 朱春楠. 用于快速检测铅离子的新型双发射碳点比率荧光探针[J]. 光谱学与光谱分析, 2023, 43(12): 3788. YI Min-na, CAO Hui-min, LI Shuang-na-si, ZHANG Zhu-shan-ying, ZHU Chun-nan. A Novel Dual Emission Carbon Point Ratio Fluorescent Probe for Rapid Detection of Lead Ions[J]. Spectroscopy and Spectral Analysis, 2023, 43(12): 3788.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!