光学学报, 2017, 37 (1): 0101004, 网络出版: 2017-01-13   

基于小波分析的大气湍流相位屏模拟 下载: 529次

Simulation of Atmospheric Turbulence Phase Screen Based on Wavelet Analysis
丰帆 1,2,3,*李常伟 1,2
作者单位
1 中国科学院国家天文台南京天文光学技术研究所, 江苏 南京210042
2 中国科学院天文光学技术重点实验室, 江苏 南京210042
3 中国科学院大学, 北京 100049
摘要
大尺寸、高分辨率大气湍流相位屏的快速模拟对于在实验中验证自适应光学系统的性能及控制算法的稳定性至关重要。提出了一种基于小波分析模拟大气湍流相位屏的方案。根据离散小波变换的频段分割性质, 对Von Karman型功率谱进行切割; 基于能量守恒原理, 生成不同尺度上对应频段的近似高频系数; 利用小波层之间低频系数的递推关系, 得到最高层低频系数的相关函数, 并利用相关函数法来模拟低频系数; 通过小波合成算法得到最终的大气湍流相位屏。模拟结果表明, 基于小波分析产生的大气湍流相位屏与Von Karman模型较好地吻合; 该方法的计算复杂度低, 能快速模拟大尺寸、高分辨率大气湍流相位屏。
Abstract
The fast simulation for atmospheric turbulence phase screen with large size and high resolution is essential to verify the performance and the control algorithm stability of the adaptive optical system in laboratory. A scheme of simulating atmospheric turbulence phase screen based on wavelet analysis is proposed. According to the frequency band segmentation of discrete wavelet transform, the Von Karman power spectrum is cut. The approximate high frequency coefficients of corresponding frequency bands at different scales are generated based on the energy conservation principle. The correlation function of low frequency coefficient of the top level is obtained when we use the recursive relations among the low frequency coefficients of wavelet layers, and the correlation function method is used to simulate low frequency coefficients. The final atmospheric turbulence phase screen is synthesized by the wavelet synthesis algorithm. Numerical simulation results show that the atmospheric turbulence phase screen generated based on wavelet analysis is consistent with the Von Karman model. The computational complexity of the proposed method is low, and it can quickly simulate atmospheric turbulence phase screen with large size and high resolution.
参考文献

[1] Mcglamery B L. Computer simulation studies of restoration of turbulence degraded images[J]. J Opt Soc Am, 1976, 66(2): 225-233.

[2] Shellan J B. Statistical properties of the strehl ratio as a function of pupil diameter and level of adaptive optics correction following atmospheric propagation[J]. J Opt Soc Am A, 2004, 21(8): 1445-1451.

[3] Lane R G, Glindemann A, Dainty J C. Simulation of a Kolmogorov phase screen[J]. Wave Random Media, 1992, 2(3): 209-224.

[4] Carbillet M, Riccardi A. Numerical modeling of atmospherically perturbed phase screens: New solutions for classical fast Fourier transform and Zernike methods[J]. Appl Opt, 2010, 49(31): G47-G52.

[5] Xiang J S. Accurate compensation of the low-frequency components for the FFT based turbulent phase screen[J]. Opt Express, 2012, 20(1): 681-687.

[6] 向劲松. 快速傅里叶变换湍流相位屏高频误差的补偿方法[J]. 光学学报, 2014, 34(10): 1001003.

    Xiang Jinsong. High-frequency error compensation method for the fast Fourier transform based turbulent phase screen[J]. Acta Optica Sinica, 2014, 34(10): 1001003.

[7] 谭 涛, 罗 奇, 谭 毅, 等. 旋转相位屏模拟大气湍流时空特性的测量[J]. 激光与光电子学进展, 2015, 52(8): 080101.

    Tan Tao, Luo Qi, Tan Yi, et al. Measurement of temporal and spatial characteristics of atmospheric turbulence simulated by a rolling phase screen[J]. Laser & Optoelectronics Progress, 2015, 52(8): 080101.

[8] Charnotskii M. Sparse spectrum model for a turbulent phase[J]. J Opt Soc Am A, 2013, 30(3): 479-488.

[9] Assemat F, Wilson R W, Gendron E. Method for simulating infinitely long and non stationary phase screens with optimized memory storage[J]. Opt Express, 2006, 14(3): 988-999.

[10] Fried D L, Clark T. Extruding Kolmogorov-type phase screen ribbons[J]. J Opt Soc Am A, 2008, 25(2): 463-468.

[11] Jia P, Zhang S J. Simulation and fabrication of the atmospheric turbulence phase screen based on a fractal model[J]. Res Astron Astrophys, 2012, 12(5): 584-590.

[12] Harding C M, Johnston R A, Lane R G. Fast simulation of a Kolmogorov phase screen[J]. Appl Opt, 1999, 38(11): 2161-2170.

[13] Noll R J. Zernike polynomials and atmospheric turbulence[J]. J Opt Soc Am, 1976, 66(3): 207-211.

[14] Roddier N. Atmospheric wavefront simulation using Zernike polynomials[J]. Opt Eng, 1990, 29(10): 1174-1180.

[15] Beghi A, Cenedese A, Masiero A. Multiscale stochastic approach for phase screens synthesis[J]. Appl Opt, 2011, 50(21): 4124-4133.

[16] Mallat S G. A theory for multiresolution signal decomposition the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.

丰帆, 李常伟. 基于小波分析的大气湍流相位屏模拟[J]. 光学学报, 2017, 37(1): 0101004. Feng Fan, Li Changwei. Simulation of Atmospheric Turbulence Phase Screen Based on Wavelet Analysis[J]. Acta Optica Sinica, 2017, 37(1): 0101004.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!