中国光学, 2018, 11 (3): 513, 网络出版: 2018-07-24   

微流控SERS芯片及其生物传感应用

Microfluidic SERS chip and its biosensing applications
作者单位
东南大学 先进光子学中心, 江苏 南京 210096
引用该论文

王志乐, 王著元, 宗慎飞, 崔一平. 微流控SERS芯片及其生物传感应用[J]. 中国光学, 2018, 11(3): 513.

WANG Zhi-le, WANG Zhu-yuan, ZONG Shen-fei, CUI Yi-ping. Microfluidic SERS chip and its biosensing applications[J]. Chinese Optics, 2018, 11(3): 513.

参考文献

[1] VAN DEN BERG A,BERGVELD P. Labs-on-a-chip: origin, highlights and future perspectives. On the occasion of the 10th microtas conference[J]. Lab. Chip,2006,6(10): 1266-1273.

[2] HUANG J A,ZHANG Y L,DING H,et al.. SERS-enabled lab-on-a-chip systems[J]. Advanced Optical Materials,2015,3(5): 618-633.

[3] CARRASCOSA L G,HUERTAS C S,LECHUGA L M. Prospects of optical biosensors for emerging label-free RNA analysis[J]. Trac-Trends in Analytical Chemistry,2016,80: 177-189.

[4] AVELLA-OLIVER M,PUCHADES R,WACHSMANN-HOGIU S,et al.. Label-free SERS analysis of proteins and exosomes with large-scale substrates from recordable compact disks[J]. Sensors and Actuators B-Chemical,2017,252: 657-662.

[5] ZRIMSEK A B,CHIANG N H,MATTEI M,et al.. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy[J]. Chemical Reviews,2017,117(11): 7583-7613.

[6] WU L,WANG Z,ZONG S,et al.. Simultaneous evaluation of p53 and p21 expression level for early cancer diagnosis using SERS technique[J]. Analyst,2013,138(12): 3450-3456.

[7] NGUYEN A H,LEE J,CHOI H I,et al.. Fabrication of plasmon length-based surface enhanced Raman scattering for multiplex detection on microfluidic device[J]. Biosensors & Bioelectronics,2015,70: 358-365.

[8] JAHN I J,ZUKOVSKAJA O,ZHENG X S,et al.. Surface-enhanced Raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications[J]. Analyst,2017,142(7): 1022-1047.

[9] ZHOU Q,KIM T. Review of microfluidic approaches for surface-enhanced Raman scattering[J]. Sensors and Actuators B-Chemical,2016,227: 504-514.

[10] RAMAN C V,KRISHNAN K S. A new type of secondary radiation(reprinted from nature,vol 121,pp 501-502,1928)[J]. Current Science,1998,74(4): 381-381.

[11] FLEISCHMANN M,HENDRA P J,MCQUILLAN A J. Raman-spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters,1974,26(2): 163-166.

[12] SCHLUCKER S. Surface-enhanced Raman spectroscopy: concepts and chemical applications[J]. Angewandte Chemie International Edition,2014,53(19): 4756-4795.

[13] LE RU E C,MEYER S A,ARTUR C,et al.. Experimental demonstration of surface selection rules for SERS on flat metallic surfaces[J]. Chemical Communications(Camb),2011,47(13): 3903-3905.

[14] HARMSEN S,HUANG R M,WALL M A,et al.. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging[J]. Science Translational Medicine,2015,7(271): 11.

[15] ZHOU J J,XIONG Q R,MA J L,et al.. Polydopamine-enabled approach toward tailored plasmonic nanogapped nanoparticles: from nanogap engineering to multifunctionality[J]. ACS Nano,2016,10(12): 11066-11075.

[16] DING S Y,YI J,LI J F,et al.. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials,2016,1(6): 16021.

[17] ZONG S,WANG Z,CHEN H,et al.. Ultrasensitive telomerase activity detection by telomeric elongation controlled surface enhanced Raman scattering[J]. Small,2013,9(24): 4215-4220.

[18] ZONG S,WANG Z,CHEN H,et al. Assessing telomere length using surface enhanced Raman scattering[J]. Scientific Reports,2014,4: 6977.

[19] WANG Z,ZONG S,YANG J,et al. One-step functionalized gold nanorods as intracellular probe with improved SERS performance and reduced cytotoxicity[J]. Biosensors and Bioelectronics,2010,26(1): 241-247.

[20] SENAPATI D,SINGH A K,RAY P C. Real time monitoring of the shape evolution of branched gold nanostructure[J]. Chemical Physics Letters,2010,487(1): 88-91.

[21] REGUERA J,LANGER J,DE ABERASTURI D J,et al.. Anisotropic metal nanoparticles for surface enhanced Raman scattering[J]. Chemical Society Reviews,2017,46(13): 3866-3885.

[22] PEI Y,WANG Z,ZONG S,et al.. Highly sensitive SERS-based immunoassay with simultaneous utilization of self-assembled substrates of gold nanostars and aggregates of gold nanostars[J]. Journal of Materials Chemistry B,2013,1(32): 3992.

[23] SONG C,WANG Z,ZHANG R,et al.. Highly sensitive immunoassay based on Raman reporter-labeled immuno-Au aggregates and SERS-active immune substrate[J]. Biosensors and Bioelectronics,2009,25(4): 826-831.

[24] LIU M,WANG Z,ZONG S,et al.. SERS-based DNA detection in aqueous solutions using oligonucleotide-modified Ag nanoprisms and gold nanoparticles[J]. Analytical and Bioanalytical Chemistry,2013,405(18): 6131-6136.

[25] WUSTHOLZ K L,HENRY A-I,MCMAHON J M,et al.. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy[J]. Journal of the American Chemical Society,2010,132(31): 10903-10910.

[26] GELLNER M,STEINIGEWEG D,ICHILMANN S,et al.. 3d self-assembled plasmonic superstructures of gold nanospheres: synthesis and characterization at the single-particle level[J]. Small,2011,7(24): 3445-3451.

[27] LEE S J,MORRILL A R,MOSKOVITS M. Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy[J]. Journal of the American Chemical Society,2006,128(7): 2200-2201.

[28] CHIRUMAMILLA M,TOMA A,GOPALAKRISHNAN A,et al.. 3d nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced Raman scattering[J]. Advanced Materials,2014,26(15): 2353-2358.

[29] LI J F,HUANG Y F,DING Y,et al.. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature,2010,464(7287): 392-395.

[30] WU D Y,LI J F,REN B,et al.. Electrochemical surface-enhanced Raman spectroscopy of nanostructures[J]. Chemical Society Reviews,2008,37(5): 1025-1041.

[31] WANG Z,ZONG S,WU L,et al.. SERS-activated platforms for immunoassay: probes, encoding methods, and applications[J]. Chemical Reviews,2017,117(12): 7910-7963.

[32] FENG J,XU L,CUI G,et al.. Building SERS-active heteroassemblies for ultrasensitive bisphenol a detection[J]. Biosensors and Bioelectronics,2016,81: 138-142.

[33] LI A,TANG L,SONG D,et al.. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinb1[J]. Nanoscale,2016,8(4): 1873-1878.

[34] SHI H,CHEN N,SU Y,et al.. Reusable silicon-based surface-enhanced Raman scattering ratiometric aptasensor with high sensitivity, specificity, and reproducibility[J]. Analytical Chemistry,2017,89(19): 10279-10285.

[35] JIANG T,WANG X,ZHOU J,et al. Hydrothermal synthesis of Ag@mSiO2@Ag three core-shell nanoparticles and their sensitive and stable SERS properties[J]. Nanoscale,2016,8(9): 4908-4914.

[36] FU X,CHENG Z,YU J,et al.. A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA[J]. Biosensors and Bioelectronics,2016,78: 530-537.

[37] XU L,YAN W,MA W,et al.. SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers[J]. Advanced Materials,2015,27(10): 1706-1711.

[38] ADARSH N,RAMYA A N,MAITI K K,et al.. Unveiling nir Aza-boron-dipyrromethene(bodipy) dyes as raman probes: Surface-enhanced Raman scattering(SERS)-guided selective detection and imaging of human cancer cells[J]. Chemistry,2017,23(57): 14286-14291.

[39] ZONG S,CHEN C,WANG Z,et al. Surface enhanced Raman scattering based in situ hybridization strategy for telomere length assessment[J]. ACS Nano,2016,10(2): 2950-2959.

[40] ZONG S,WANG Z,ZHANG R,et al. A multiplex and straightforward aqueous phase immunoassay protocol through the combination of SERS-fluorescence dual mode nanoprobes and magnetic nanobeads[J]. Biosensors and Bioelectronics,2013,41: 745-751.

[41] LIU M,WANG Z,PAN L,et al.. A SERS/fluorescence dual-mode nanosensor based on the human telomeric g-quadruplex DNA: application to mercury(ii) detection[J]. Biosensors and Bioelectronics,2015,69: 142-147.

[42] ZHANG Y,WANG Z,WU L,et al.. Rapid simultaneous detection of multi-pesticide residues on apple using sers technique[J]. Analyst,2014,139(20): 5148-5154.

[43] ZHU D,WANG Z,ZONG S,et al.. Wavenumber-intensity joint SERS encoding using silver nanoparticles for tumor cell targeting[J]. RSC Advances,2014,4(105): 60936-60942.

[44] LAI Y,SUN S,HE T,et al. Raman-encoded microbeads for spectral multiplexing with SERS detection[J]. RCS Advances,2015,5(18): 13762-13767.

[45] WANG Z,ZONG S,LI W,et al.. SERS-fluorescence joint spectral encoding using organic-metal-qd hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice[J]. Journal of the American Chemical Society,2012,134(6): 2993-3000.

[46] HIDI I J,JAHN M,WEBER K,et al.. Lab-on-a-chip-surface enhanced Raman scattering combined with the standard addition method: toward the quantification of nitroxoline in spiked human urine samples[J]. Analytical Chemistry,2016,88(18): 9173-9180.

[47] YAZDI S H,GILES K L,WHITE I M. Multiplexed detection of DNA sequences using a competitive displacement assay in a microfluidic SERRS-based device[J]. Analytical Chemistry,2013,85(21): 10605-10611.

[48] GAO R,KO J,CHA K,et al.. Fast and sensitive detection of an anthrax biomarker using SERS-based solenoid microfluidic sensor[J]. Biosensors and Bioelectronics,2015,72: 230-236.

[49] ZHOU J,REN K,ZHAO Y,et al.. Convenient formation of nanoparticle aggregates on microfluidic chips for highly sensitive SERS detection of biomolecules[J]. Analytical and Bioanalytical Chemistry,2012,402(4): 1601-1609.

[50] HWANG H,HAN D,OH Y J,et al.. In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic sers platform[J]. Lab. Chip,2011,11(15): 2518-2525.

[51] OH Y J,JEONG K H. Optofluidic SERS chip with plasmonic nanoprobes self-aligned along microfluidic channels[J]. Lab. Chip,2014,14(5): 865-868.

[52] MAO H,WU W,SHE D,et al.. Microfluidic surface-enhanced Raman scattering sensors based on nanopillar forests realized by an oxygen-plasma-stripping-of-photoresist technique[J]. Small,2014,10(1): 127-134.

[53] XU B B,ZHANG R,LIU X Q,et al.. On-chip fabrication of silver microflower arrays as a catalytic microreactor for allowing in situ SERS monitoring[J]. Chemical Communications(Camb),2012,48(11): 1680-1682.

[54] YAN W,YANG L,CHEN J,et al. In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility[J]. Advanced Materials,2017,29(36)

[55] MUEHLIG A,BOCKLITZ T,LABUGGER I,et al.. Loc-sers: A promising closed system for the identification of mycobacteria[J]. Analytical Chemistry,2016,88(16): 7998-8004.

[56] HIDI I J,JAHN M,PLETZ M W,et al.. Toward levofloxacin monitoring in human urine samples by employing the LoC-SERS technique[J]. Journal of Physical Chemistry C,2016,120(37): 20613-20623.

[57] ZOU K,GAO Z,DENG Q,et al.. Picomolar detection of carcinoembryonic antigen in whole blood using microfluidics and surface-enhanced Raman spectroscopy[J]. Electrophoresis,2016,37(5-6): 786-789.

[58] NOVARA C,CHIADO A,PACCOTTI N,et al.. SERS-active metal-dielectric nanostructures integrated in microfluidic devices for label-free quantitative detection of miRNA[J]. Faraday Discuss,2017,

[59] GAO R,CHENG Z,DEMELLO A J,et al.. Wash-free magnetic immunoassay of the psa cancer marker using SERS and droplet microfluidics[J]. Lab. Chip,2016,16(6): 1022-1029.

[60] PALLAORO A,HOONEJANI M R,BRAUN G B,et al.. Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel[J]. ACS Nano,2015,9(4): 4328-4336.

[61] WU L,WANG Z,ZHANG Y,et al.. In situ probing of cell-cell communications with surface-enhanced Raman scattering(SERS) nanoprobes and microfluidic networks for screening of immunotherapeutic drugs[J]. Nano Research,2016,10(2): 584-594.

[62] WU L,WANG Z,FAN K,et al.. A SERS-assisted 3d barcode chip for high-throughput biosensing[J]. Small,2015,11(23): 2798-2806.

[63] PATZE S,HUEBNER U,LIEBOLD F,et al.. SERS as an analytical tool in environmental science: the detection of sulfamethoxazole in the nanomolar range by applying a microfluidic cartridge setup[J]. Analytica Chimica Acta,2017,949: 1-7.

[64] QI N,LI B,YOU H,et al.. Surface-enhanced Raman scattering on a zigzag microfluidic chip: towards high-sensitivity detection of As(Ⅲ) ions[J]. Analytical Methods,2014,6(12): 4077-4082.

[65] WU L,WANG Z,ZONG S,et al.. Rapid and reproducible analysis of thiocyanate in real human serum and saliva using a droplet SERS-microfluidic chip[J]. Biosensors and Bioelectronics,2014,62: 13-18.

[66] CHOI J,LEE K S,JUNG J H,et al.. Integrated real-time optofluidic SERS via a liquid-core/liquid-cladding waveguide[J]. RSC Advances,2015,5(2): 922-927.

[67] YAZDI S H,WHITE I M. Optofluidic surface enhanced Raman spectroscopy microsystem forsensitive and repeatable on-site detection of chemical contaminants[J]. Analytical Chemistry,2012,84(18): 7992-7998.

[68] HAN Z,LIU H,MENG J,et al.. Portable kit for identification and detection of drugs in human urine using surface-enhanced Raman spectroscopy[J]. Analytical Chemistry,2015,87(18): 9500-9506.

[69] KIM A,BARCELO S J,WILLIAMS R S,et al.. Melamine sensing in milk products by using surface enhanced Raman scattering[J]. Analytical Chemistry,2012,84(21): 9303-9309.

[70] VILLA J E L,POPPI R J. Aportable SERS method for the determination of uric acid using a paper-based substrate and multivariate curve resolution[J]. Analyst,2016,141(6): 1966-1972.

王志乐, 王著元, 宗慎飞, 崔一平. 微流控SERS芯片及其生物传感应用[J]. 中国光学, 2018, 11(3): 513. WANG Zhi-le, WANG Zhu-yuan, ZONG Shen-fei, CUI Yi-ping. Microfluidic SERS chip and its biosensing applications[J]. Chinese Optics, 2018, 11(3): 513.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!