中国光学, 2018, 11 (3): 513, 网络出版: 2018-07-24   

微流控SERS芯片及其生物传感应用

Microfluidic SERS chip and its biosensing applications
作者单位
东南大学 先进光子学中心, 江苏 南京 210096
摘要
由于微流控芯片具有优异的集成性和灵活的可操作性, 基于芯片上的检测方法被大量开发, 发展十分迅速。其中, 表面增强拉曼光谱(SERS)凭借其超高的灵敏度、独一无二的指纹谱和窄峰宽等特点成为一种广泛采用的检测手段。SERS微流控芯片集SERS检测技术与微流控芯片的优势于一体, 一方面为SERS检测方法的重复性和可靠性提供了一个高效平台, 另一方面推动了微流控芯片的功能拓展, 在生物分子探测、细胞捕获乃至组织模拟等领域具有广阔的应用前景。本文在简要介绍SERS的原理及其生物传感应用的基础上, 重点概述了SERS微流控芯片的构建及其在生物传感及检测中的应用, 最后探讨了该研究方向存在的问题及发展方向。
Abstract
With excellent integrability and flexible operability, microfluidic chips have been developed rapidly. Among them, Surface-enhanced Raman Spectroscopy (SERS) has become a widely used detection technique due to its ultrasensitivity, unique fingerprint spectrum and narrow spectroscopic bands. The SERS microfluidic chip integrates the advantages of the SERS detection technology and the microfluidic chip. On the one hand, it provides an efficient platform for the repeatability and reliability of the SERS detection method. On the other hand, it promotes function expansion for microfluidic chips. The SERS microfluidic chips have broad application prospects in the fields of biomolecule detection, cell capture and even tissue simulation. In this review, the principle of SERS is briefly introduced, and the construction of SERS microfluidic chip and its applications in biosensing and detection are emphatically summarized. Finally, the problems and development direction of the research are proposed.
参考文献

[1] VAN DEN BERG A,BERGVELD P. Labs-on-a-chip: origin, highlights and future perspectives. On the occasion of the 10th microtas conference[J]. Lab. Chip,2006,6(10): 1266-1273.

[2] HUANG J A,ZHANG Y L,DING H,et al.. SERS-enabled lab-on-a-chip systems[J]. Advanced Optical Materials,2015,3(5): 618-633.

[3] CARRASCOSA L G,HUERTAS C S,LECHUGA L M. Prospects of optical biosensors for emerging label-free RNA analysis[J]. Trac-Trends in Analytical Chemistry,2016,80: 177-189.

[4] AVELLA-OLIVER M,PUCHADES R,WACHSMANN-HOGIU S,et al.. Label-free SERS analysis of proteins and exosomes with large-scale substrates from recordable compact disks[J]. Sensors and Actuators B-Chemical,2017,252: 657-662.

[5] ZRIMSEK A B,CHIANG N H,MATTEI M,et al.. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy[J]. Chemical Reviews,2017,117(11): 7583-7613.

[6] WU L,WANG Z,ZONG S,et al.. Simultaneous evaluation of p53 and p21 expression level for early cancer diagnosis using SERS technique[J]. Analyst,2013,138(12): 3450-3456.

[7] NGUYEN A H,LEE J,CHOI H I,et al.. Fabrication of plasmon length-based surface enhanced Raman scattering for multiplex detection on microfluidic device[J]. Biosensors & Bioelectronics,2015,70: 358-365.

[8] JAHN I J,ZUKOVSKAJA O,ZHENG X S,et al.. Surface-enhanced Raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications[J]. Analyst,2017,142(7): 1022-1047.

[9] ZHOU Q,KIM T. Review of microfluidic approaches for surface-enhanced Raman scattering[J]. Sensors and Actuators B-Chemical,2016,227: 504-514.

[10] RAMAN C V,KRISHNAN K S. A new type of secondary radiation(reprinted from nature,vol 121,pp 501-502,1928)[J]. Current Science,1998,74(4): 381-381.

[11] FLEISCHMANN M,HENDRA P J,MCQUILLAN A J. Raman-spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters,1974,26(2): 163-166.

[12] SCHLUCKER S. Surface-enhanced Raman spectroscopy: concepts and chemical applications[J]. Angewandte Chemie International Edition,2014,53(19): 4756-4795.

[13] LE RU E C,MEYER S A,ARTUR C,et al.. Experimental demonstration of surface selection rules for SERS on flat metallic surfaces[J]. Chemical Communications(Camb),2011,47(13): 3903-3905.

[14] HARMSEN S,HUANG R M,WALL M A,et al.. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging[J]. Science Translational Medicine,2015,7(271): 11.

[15] ZHOU J J,XIONG Q R,MA J L,et al.. Polydopamine-enabled approach toward tailored plasmonic nanogapped nanoparticles: from nanogap engineering to multifunctionality[J]. ACS Nano,2016,10(12): 11066-11075.

[16] DING S Y,YI J,LI J F,et al.. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials,2016,1(6): 16021.

[17] ZONG S,WANG Z,CHEN H,et al.. Ultrasensitive telomerase activity detection by telomeric elongation controlled surface enhanced Raman scattering[J]. Small,2013,9(24): 4215-4220.

[18] ZONG S,WANG Z,CHEN H,et al. Assessing telomere length using surface enhanced Raman scattering[J]. Scientific Reports,2014,4: 6977.

[19] WANG Z,ZONG S,YANG J,et al. One-step functionalized gold nanorods as intracellular probe with improved SERS performance and reduced cytotoxicity[J]. Biosensors and Bioelectronics,2010,26(1): 241-247.

[20] SENAPATI D,SINGH A K,RAY P C. Real time monitoring of the shape evolution of branched gold nanostructure[J]. Chemical Physics Letters,2010,487(1): 88-91.

[21] REGUERA J,LANGER J,DE ABERASTURI D J,et al.. Anisotropic metal nanoparticles for surface enhanced Raman scattering[J]. Chemical Society Reviews,2017,46(13): 3866-3885.

[22] PEI Y,WANG Z,ZONG S,et al.. Highly sensitive SERS-based immunoassay with simultaneous utilization of self-assembled substrates of gold nanostars and aggregates of gold nanostars[J]. Journal of Materials Chemistry B,2013,1(32): 3992.

[23] SONG C,WANG Z,ZHANG R,et al.. Highly sensitive immunoassay based on Raman reporter-labeled immuno-Au aggregates and SERS-active immune substrate[J]. Biosensors and Bioelectronics,2009,25(4): 826-831.

[24] LIU M,WANG Z,ZONG S,et al.. SERS-based DNA detection in aqueous solutions using oligonucleotide-modified Ag nanoprisms and gold nanoparticles[J]. Analytical and Bioanalytical Chemistry,2013,405(18): 6131-6136.

[25] WUSTHOLZ K L,HENRY A-I,MCMAHON J M,et al.. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy[J]. Journal of the American Chemical Society,2010,132(31): 10903-10910.

[26] GELLNER M,STEINIGEWEG D,ICHILMANN S,et al.. 3d self-assembled plasmonic superstructures of gold nanospheres: synthesis and characterization at the single-particle level[J]. Small,2011,7(24): 3445-3451.

[27] LEE S J,MORRILL A R,MOSKOVITS M. Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy[J]. Journal of the American Chemical Society,2006,128(7): 2200-2201.

[28] CHIRUMAMILLA M,TOMA A,GOPALAKRISHNAN A,et al.. 3d nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced Raman scattering[J]. Advanced Materials,2014,26(15): 2353-2358.

[29] LI J F,HUANG Y F,DING Y,et al.. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature,2010,464(7287): 392-395.

[30] WU D Y,LI J F,REN B,et al.. Electrochemical surface-enhanced Raman spectroscopy of nanostructures[J]. Chemical Society Reviews,2008,37(5): 1025-1041.

[31] WANG Z,ZONG S,WU L,et al.. SERS-activated platforms for immunoassay: probes, encoding methods, and applications[J]. Chemical Reviews,2017,117(12): 7910-7963.

[32] FENG J,XU L,CUI G,et al.. Building SERS-active heteroassemblies for ultrasensitive bisphenol a detection[J]. Biosensors and Bioelectronics,2016,81: 138-142.

[33] LI A,TANG L,SONG D,et al.. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinb1[J]. Nanoscale,2016,8(4): 1873-1878.

[34] SHI H,CHEN N,SU Y,et al.. Reusable silicon-based surface-enhanced Raman scattering ratiometric aptasensor with high sensitivity, specificity, and reproducibility[J]. Analytical Chemistry,2017,89(19): 10279-10285.

[35] JIANG T,WANG X,ZHOU J,et al. Hydrothermal synthesis of Ag@mSiO2@Ag three core-shell nanoparticles and their sensitive and stable SERS properties[J]. Nanoscale,2016,8(9): 4908-4914.

[36] FU X,CHENG Z,YU J,et al.. A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA[J]. Biosensors and Bioelectronics,2016,78: 530-537.

[37] XU L,YAN W,MA W,et al.. SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers[J]. Advanced Materials,2015,27(10): 1706-1711.

[38] ADARSH N,RAMYA A N,MAITI K K,et al.. Unveiling nir Aza-boron-dipyrromethene(bodipy) dyes as raman probes: Surface-enhanced Raman scattering(SERS)-guided selective detection and imaging of human cancer cells[J]. Chemistry,2017,23(57): 14286-14291.

[39] ZONG S,CHEN C,WANG Z,et al. Surface enhanced Raman scattering based in situ hybridization strategy for telomere length assessment[J]. ACS Nano,2016,10(2): 2950-2959.

[40] ZONG S,WANG Z,ZHANG R,et al. A multiplex and straightforward aqueous phase immunoassay protocol through the combination of SERS-fluorescence dual mode nanoprobes and magnetic nanobeads[J]. Biosensors and Bioelectronics,2013,41: 745-751.

[41] LIU M,WANG Z,PAN L,et al.. A SERS/fluorescence dual-mode nanosensor based on the human telomeric g-quadruplex DNA: application to mercury(ii) detection[J]. Biosensors and Bioelectronics,2015,69: 142-147.

[42] ZHANG Y,WANG Z,WU L,et al.. Rapid simultaneous detection of multi-pesticide residues on apple using sers technique[J]. Analyst,2014,139(20): 5148-5154.

[43] ZHU D,WANG Z,ZONG S,et al.. Wavenumber-intensity joint SERS encoding using silver nanoparticles for tumor cell targeting[J]. RSC Advances,2014,4(105): 60936-60942.

[44] LAI Y,SUN S,HE T,et al. Raman-encoded microbeads for spectral multiplexing with SERS detection[J]. RCS Advances,2015,5(18): 13762-13767.

[45] WANG Z,ZONG S,LI W,et al.. SERS-fluorescence joint spectral encoding using organic-metal-qd hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice[J]. Journal of the American Chemical Society,2012,134(6): 2993-3000.

[46] HIDI I J,JAHN M,WEBER K,et al.. Lab-on-a-chip-surface enhanced Raman scattering combined with the standard addition method: toward the quantification of nitroxoline in spiked human urine samples[J]. Analytical Chemistry,2016,88(18): 9173-9180.

[47] YAZDI S H,GILES K L,WHITE I M. Multiplexed detection of DNA sequences using a competitive displacement assay in a microfluidic SERRS-based device[J]. Analytical Chemistry,2013,85(21): 10605-10611.

[48] GAO R,KO J,CHA K,et al.. Fast and sensitive detection of an anthrax biomarker using SERS-based solenoid microfluidic sensor[J]. Biosensors and Bioelectronics,2015,72: 230-236.

[49] ZHOU J,REN K,ZHAO Y,et al.. Convenient formation of nanoparticle aggregates on microfluidic chips for highly sensitive SERS detection of biomolecules[J]. Analytical and Bioanalytical Chemistry,2012,402(4): 1601-1609.

[50] HWANG H,HAN D,OH Y J,et al.. In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic sers platform[J]. Lab. Chip,2011,11(15): 2518-2525.

[51] OH Y J,JEONG K H. Optofluidic SERS chip with plasmonic nanoprobes self-aligned along microfluidic channels[J]. Lab. Chip,2014,14(5): 865-868.

[52] MAO H,WU W,SHE D,et al.. Microfluidic surface-enhanced Raman scattering sensors based on nanopillar forests realized by an oxygen-plasma-stripping-of-photoresist technique[J]. Small,2014,10(1): 127-134.

[53] XU B B,ZHANG R,LIU X Q,et al.. On-chip fabrication of silver microflower arrays as a catalytic microreactor for allowing in situ SERS monitoring[J]. Chemical Communications(Camb),2012,48(11): 1680-1682.

[54] YAN W,YANG L,CHEN J,et al. In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility[J]. Advanced Materials,2017,29(36)

[55] MUEHLIG A,BOCKLITZ T,LABUGGER I,et al.. Loc-sers: A promising closed system for the identification of mycobacteria[J]. Analytical Chemistry,2016,88(16): 7998-8004.

[56] HIDI I J,JAHN M,PLETZ M W,et al.. Toward levofloxacin monitoring in human urine samples by employing the LoC-SERS technique[J]. Journal of Physical Chemistry C,2016,120(37): 20613-20623.

[57] ZOU K,GAO Z,DENG Q,et al.. Picomolar detection of carcinoembryonic antigen in whole blood using microfluidics and surface-enhanced Raman spectroscopy[J]. Electrophoresis,2016,37(5-6): 786-789.

[58] NOVARA C,CHIADO A,PACCOTTI N,et al.. SERS-active metal-dielectric nanostructures integrated in microfluidic devices for label-free quantitative detection of miRNA[J]. Faraday Discuss,2017,

[59] GAO R,CHENG Z,DEMELLO A J,et al.. Wash-free magnetic immunoassay of the psa cancer marker using SERS and droplet microfluidics[J]. Lab. Chip,2016,16(6): 1022-1029.

[60] PALLAORO A,HOONEJANI M R,BRAUN G B,et al.. Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel[J]. ACS Nano,2015,9(4): 4328-4336.

[61] WU L,WANG Z,ZHANG Y,et al.. In situ probing of cell-cell communications with surface-enhanced Raman scattering(SERS) nanoprobes and microfluidic networks for screening of immunotherapeutic drugs[J]. Nano Research,2016,10(2): 584-594.

[62] WU L,WANG Z,FAN K,et al.. A SERS-assisted 3d barcode chip for high-throughput biosensing[J]. Small,2015,11(23): 2798-2806.

[63] PATZE S,HUEBNER U,LIEBOLD F,et al.. SERS as an analytical tool in environmental science: the detection of sulfamethoxazole in the nanomolar range by applying a microfluidic cartridge setup[J]. Analytica Chimica Acta,2017,949: 1-7.

[64] QI N,LI B,YOU H,et al.. Surface-enhanced Raman scattering on a zigzag microfluidic chip: towards high-sensitivity detection of As(Ⅲ) ions[J]. Analytical Methods,2014,6(12): 4077-4082.

[65] WU L,WANG Z,ZONG S,et al.. Rapid and reproducible analysis of thiocyanate in real human serum and saliva using a droplet SERS-microfluidic chip[J]. Biosensors and Bioelectronics,2014,62: 13-18.

[66] CHOI J,LEE K S,JUNG J H,et al.. Integrated real-time optofluidic SERS via a liquid-core/liquid-cladding waveguide[J]. RSC Advances,2015,5(2): 922-927.

[67] YAZDI S H,WHITE I M. Optofluidic surface enhanced Raman spectroscopy microsystem forsensitive and repeatable on-site detection of chemical contaminants[J]. Analytical Chemistry,2012,84(18): 7992-7998.

[68] HAN Z,LIU H,MENG J,et al.. Portable kit for identification and detection of drugs in human urine using surface-enhanced Raman spectroscopy[J]. Analytical Chemistry,2015,87(18): 9500-9506.

[69] KIM A,BARCELO S J,WILLIAMS R S,et al.. Melamine sensing in milk products by using surface enhanced Raman scattering[J]. Analytical Chemistry,2012,84(21): 9303-9309.

[70] VILLA J E L,POPPI R J. Aportable SERS method for the determination of uric acid using a paper-based substrate and multivariate curve resolution[J]. Analyst,2016,141(6): 1966-1972.

王志乐, 王著元, 宗慎飞, 崔一平. 微流控SERS芯片及其生物传感应用[J]. 中国光学, 2018, 11(3): 513. WANG Zhi-le, WANG Zhu-yuan, ZONG Shen-fei, CUI Yi-ping. Microfluidic SERS chip and its biosensing applications[J]. Chinese Optics, 2018, 11(3): 513.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!