红外与激光工程, 2016, 45 (5): 0505003, 网络出版: 2016-06-12  

大功率及高转换效率2.1 μm GaInSb/AlGaAsSb量子阱激光器

High power 2.1 μm GaInSb/AlGaAsSb quantum well laser diodes with high power conversion efficiency
作者单位
中国科学院半导体研究所 纳米光电子实验室, 北京 100083
摘要
报道了激射波长为2.1 μm 的GaInSb/AlGaAsSb双量子阱激光器。通过优化外延结构设计和欧姆接触, 无镀膜的宽条激光器达到了9.8%的峰值功率转换效率, 这比原来的值提高了1.5倍, 室温下得到了615 mW的连续激射功率输出和1.5 W的脉冲激射功率输出。这些激光器的阈值电流密度低至126 A/cm2, 斜率效率高达0.3 W/A。通过测试不同腔长的激光器, 测得内损耗和内量子效率分别为6 cm-1和75.5%, 均比原有器件有很大提升。激光器在连续工作3 000 h后, 功率没有明显下降。
Abstract
2.1 μm GaInSb/AlGaAsSb double quantum well lasers were reported. With optimization of epitaxial design and ohmic contact, these uncoated broad-area lasers exhibited a maximum power conversion efficiency of 9.8% which was 1.5 times greater than previous value, a room temperature continuous wave output power of 615 mW and a pulsed wave output power of 1.5 W were achieved. The threshold current density of these lasers was as low as 126 A/cm2, and the slope efficiency was as high as 0.3 W/A. By testing lasers with different cavity lengths, the internal loss and the internal quantum efficiency were measured as 6 cm-1 and 75.5%, respectively, which were all improved compared with previous device. The output power of laser diode operated in CW mode shows no apparent degradation after 3 000 h.
参考文献

[1] Choi H K, Eglash S J. Room-temperature cw operation at 2.2 μm of GaInAsSb/AlGaAsSb diode lasers grown by molecular beam epitaxy [J]. Applied Physics Letters, 1991, 59(10): 1165.

[2] Zhang Yonggang, Gu Yi, Li Yaoyao, et al. Mid-infrared semiconductor light sources, detectors and its applications [J]. Infrared and Laser Engineering, 2011, 40(10): 1846-1850. (in Chinese)

[3] Tian Chaoqun, Wei Donghan, Liu Lei, et al. Etching of GaSb-based materials of mid-infrared semiconductor laser [J]. Infrared and Laser Engineering, 2013, 42(12): 3363-3366. (in Chinese)

[4] Choi H K, Eglash S J. High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 μm with low threshold current density [J]. Applied Physics Letters, 1992, 61(10): 1154.

[5] Razeghi M, Tournié E, Brown G J, et al. High-performance single-spatial mode GaSb type-I laser diodes around 2.1 μm [C]//SPIE, 2013, 8993: 899319.

[6] Xu Yun, Wang Yongbin, Zhang Yu, et al. High power 2-μm room-temperature continuous wave operation of GaSb-based strained quantum-well lasers [J]. Chin Phys B, 2013, 22(9): 094208.

[7] Zhang Yonggang, Zheng Yanlan, Lin Chun, et al. Continuous wave performance and tunability of MBE grown 2.1 μm InGaAsSb/AlGaAsSb MQW lasers [J]. Chinese Physics Letters, 2006, 23: 2262.

[8] Zhang Yu, Wang Yongbin, Xu Yun, et al. High-temperature (T=80 ℃) operation of a 2 μm InGaSb-AlGaAsSb quantum well laser[J]. Journal of Semiconductors, 2012, 33(4):044006.

[9] Salhi A, Abdelmajid A. Self-consistent analysis of quantum well number effects on the performance of 2.3-μm GaSb-based quantum well laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 5: 918.

[10] Hilzensauer S, Giesin C, Schleife J, et al. High power diode lasers between 1.8 μm and 3.0 μm for military applications [C]//SPIE, 2013, 8898: 88980U.

[11] Liang R, Chen J F, Kipshidze G, et al. High power 2.2 μm diode lasers with heavily strained active region [J]. IEEE Photon Technol Lett, 2011, 23(10): 603.

[12] Rahimi N, Aragon A A, Romero O S, et al. Electrical and microstructure analysis of nickel-based low-resistance ohmic contacts to n-GaSb [J]. APL Materials, 2013, 1(6): 062105.

宋玉志, 宋甲坤, 张祖银, 李康文, 徐云, 宋国峰, 陈良惠. 大功率及高转换效率2.1 μm GaInSb/AlGaAsSb量子阱激光器[J]. 红外与激光工程, 2016, 45(5): 0505003. Song Yuzhi, Song Jiakun, Zhang Zuyin, Li Kangwen, Xu Yun, Song Guofeng, Chen Lianghui. High power 2.1 μm GaInSb/AlGaAsSb quantum well laser diodes with high power conversion efficiency[J]. Infrared and Laser Engineering, 2016, 45(5): 0505003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!