光学与光电技术, 2020, 18 (5): 34, 网络出版: 2021-01-14  

利用 2.5GHz光器件实现 PAM4调制信号的传输技术研究

ImplementingPAM4TechnologybyEmploying 2.5GHzOpticalComponents
作者单位
1 北京交通大学理学院光信息科学与技术研究所发光与光信息技术教育部重点实验室,北京 100044
2 中国科学院半导体研究所集成光电子学实验室,北京 101408
引用该论文

王之浩, 王智, 何人鑫, 李智勇, 匡迎新, 刘磊, 吴重庆. 利用 2.5GHz光器件实现 PAM4调制信号的传输技术研究[J]. 光学与光电技术, 2020, 18(5): 34.

WANGZhi-hao, WANGZhi, HERen-xin, LIZhi-yong, KUANGYing-xin, LIULei, WUChong-qing. ImplementingPAM4TechnologybyEmploying 2.5GHzOpticalComponents[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2020, 18(5): 34.

参考文献

[1] 金琦,胡毅 . 100/400Gbit/sPAM4光收发模块的技术分析[J].光通信研究, 2016,(2): 33-36. JIN Qi,HU Yi. Analysis of 100/400 Gbit/s PAM4 optical transceiver module technology[J]. Study on Optical Communications,2016,(2): 33-36.

[2] 陈雷,宋耕,肖刚,等 . 400Gbit/sPAM4CFP8光收发模块技术研究[J].光通信研究, 2018,(2): 60-63. CHEN Lei,SONG Geng,XIAO Gang,et al. Researchon 400 Gbit/s PAM4 CFP8 optical transceiver module technology[J]. StudyonOpticalCommunications,2018,(2): 60-63.

[3] 肖蠡虎,佘丽,徐红春,等 .基于 PAM4技术的 50Gbit/s40kmQSFP28传输模块[J].光通信研究, 2019,(2): 51-54+70. XIAO Li-hu,SHELi,XU Hong-chun,et al. 50 Gbit/s 40 km QSFP28 optical transceiver modules based on PAM4 technology[J]. StudyonOpticalCommunications,2019,(2): 51-54+70.

[4] 储涛 .硅基光电子集成器件[J].光学与光电技术, 2019,17(4): 5-9. CHUTao. Silicon-basedintegratedoptoelectronic devices[J]. Optics&OptoelectronicTechnology,2019,17(4): 5-9.

[5] Houtsma V,Van Veen D,Harstead E. Recent progress on standardization of next-generation 25,50,and 100 G EPON[J]. JournalofLightwaveTechnology,2017,35(6): 1228-1234.

[6] YGuo,YYin,YSong,et al. Demonstrationof25Gbit/sperchannelNRZtransmissionwith35dBpowerbudget using 25G Ge/Si APD for next generation 100G-PON[C]. 2017 Optical Fiber Communications Conference and Exhibition(OFC),IEEE,2017,1-3.

[7] S Li,Z Ye,N Cheng,et al. Demonstration of a real-time 25-Gb/s TDM-PON system with 25-Gb/s downstream basedonopticalduobinaryand10-Gb/sburst-modeupstreambasedonNRZ[C].2016OpticalFiberCommunications ConferenceandExhibition(OFC),IEEE,2016,1-3.

[8] 张锡芳,郑优斌 .线路侧光模块 CFP2-DCO的 OSNR参数测量方法[J].光学与光电技术, 2019,17(4): 57-63. ZHANG Xi-fang,ZHENG You-bin. OSNR measurement method of the line side CFP2-DCO[J]. Optics & OptoelectronicTechnology,2019,17(4): 57-63.

[9] 肖刚,张玓,胡毅,等 . 400Gb/sCFP8LR8光收发模块的设计与实现[J].光通信技术, 2019,43(6): 13-16. XIAO Gang,ZHANG Di,HU Yi,et al. Design and implementation of 400 Gbit/s CFP8 LR8 optical transceiver module[J]. OpticalCommunicationTechnology,2019,43(6): 13-16.

[10] 李东,王向进,高渤濡,等 . DFB激光器传感信号解调系统设计[J].光学与光电技术, 2019,17(5): 42-45. LI Dong,WANG Xiang-jin,GAO Bo-ru,et al. Design of demodulation system of DFB laser sensing signal[J]. Optics&OptoelectronicTechnology,2019,17(5): 42-45.

[11] 赵阳 .一种 25Gbps背板和光模块接口的信号完整性设计[D].成都: 电子科技大学, 2018. ZHAOYang. Onecaseofsignalintegritydesignfor25Gbpsbackplaneandopticalmoduleinterface[D]. Chengdu: UniversityofElectronicScienceandTechnologyofChina,2018.

[12] 陈炜,宋英雄,李正璇,等 .基于 25GHz光器件的 50Gb/sPAM4传输实验研究[J].光通信技术, 2018,42(12): 35-38. CHENWei,SONGYing-xiong,LIZheng-xuan,et al. Experimentalstudyof50Gb/sPAM4transmissionbasedon 25GHzopticalcomponents[J]. OpticalCommunicationTechnology,2018,42(12): 35-38.

[13] 王陆 .光纤通信系统中 MLSE均衡器的性能分析及优化[D].成都: 电子科技大学, 2010. WANG Lu. Performance analysis and optimization of MLSE equalization in optical fiber communication system[D]. Chengdu: UniversityofElectronicScienceandTechnologyofChina,2010.

[14] S -R Moon,H. -S. Kang,H. Rha,et al. C-band PAM-4 signal transmission using soft-output MLSE and LDPC code[J]. OpticalExpress,2019,(27): 110-120.

王之浩, 王智, 何人鑫, 李智勇, 匡迎新, 刘磊, 吴重庆. 利用 2.5GHz光器件实现 PAM4调制信号的传输技术研究[J]. 光学与光电技术, 2020, 18(5): 34. WANGZhi-hao, WANGZhi, HERen-xin, LIZhi-yong, KUANGYing-xin, LIULei, WUChong-qing. ImplementingPAM4TechnologybyEmploying 2.5GHzOpticalComponents[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2020, 18(5): 34.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!