光学学报, 2024, 44 (6): 0606005, 网络出版: 2024-03-11  

蓝绿激光跨介质下行链路的偏振传输特性

Polarization Transmission Characteristics of Blue-Green Laser in Cross-Medium Downlink
作者单位
1 西安邮电大学电子工程学院,陕西 西安 710121
2 西安精密机械研究所,陕西 西安 710077
摘要
为了研究粗糙动态海平面对折射偏振光的影响,利用Elfouhaily海浪谱和快速傅里叶变换生成随机动态海面,建立了激光跨粗糙空气-海水界面的偏振光传输模型。研究了不同风速、不同距离、不同光发散角下激光穿过空气-海水信道后的偏振特性和闪烁指数。仿真结果表明,风速越大,接收偏振度越小,相同条件下,圆偏振光偏振度远大于线偏振光;信道距离越长,偏振度越低;风速和链路距离变大时,闪烁指数也变大;当光束发散角减小时,闪烁指数变大;反之闪烁指数减小。验证了所提模型的可行性。本文研究为空气-海水光通信提供了理论依据。
Abstract
Objective

Cross-medium atmospheric seawater communication is influenced by the absorption, scattering, and random wave refraction of the sea surface, which results in intensity attenuation, beam drift, and depolarization effects on the received light. Currently, the research on atmospheric seawater cross-medium channels mainly focuses on sea surface reflection and non-polarization. We aim to study the transmission of polarized light, derive the refractive model, and analyze the Stokes vector variation of photons at the atmospheric seawater interface. Furthermore, a complete polarization transmission model for laser cross-medium downlink channels is built to provide valuable references for the implementation of polarized light in atmospheric seawater communication systems.

Methods

To investigate the influence of rough dynamic sea levels on refracted polarized light, we first utilize the Elfouhaily wave spectrum and its corresponding bilateral directional transfer function to generate a dynamic three-dimensional sea surface via fast Fourier transform simulation. We then build a polarized light transmission model of laser crossing a rough air-seawater interface using the Monte Carlo method, which incorporates the photon scattering in atmospheric channels, refraction at the atmospheric seawater interface, and scattering in underwater channels. Finally, the received intensity and polarization are obtained. By adopting this model, the polarization characteristics and scintillation indices of laser propagation through atmospheric seawater channels are analyzed under different wind speeds, distances, and light divergence angles.

Results and Discussions

The establishment of a dynamic three-dimensional sea surface and its related statistical data indicates that the increasing wind speed leads to gradually roughening sea surface and rising fluctuation range of sea surface tilt angle. When photons pass through the sea surface, the sea surface tilt angle during refraction is also more random. In exploring the effect of different sea surface wind speeds on underwater polarization, the polarization of received light decreases with the rising wind speed, which is positively correlated with the sea surface roughness at different wind speeds. As the wind speed increases, photons refract and diverge outward, resulting in an increase in scattering times and a decrease in polarization (Fig. 5). Additionally, the received light scintillation indices under different wind speeds and beam divergence angles are analyzed. As the wind speed increases, the scintillation index also rises, and the influence of the sea on the light intensity fluctuation becomes greater (Fig. 8). By changing the divergence angle of the beam, if the divergence angle gets smaller, the received photons will be refracted by a smaller area of the sea surface, thus bringing beam drifting and an increase in the scintillation index. Conversely, if the divergence angle increases, the scintillation index decreases (Fig. 9).

Conclusions

We build a dynamic three-dimensional sea surface model influenced by wind speed and a polarization transmission model for laser light across the air-seawater interface. By varying the wind speed, link distance, and laser beam divergence angle, we statistically analyze the polarization degree and scintillation index of the received beam. The results show that wind speed influences the statistical distribution of three-dimensional sea surface tilt angles and roughness. As wind speed increases, sea surface roughness rises, resulting in a decrease in the polarization degree of underwater photons. Meanwhile, the longer link distance leads to a lower polarization degree. The scintillation index measures the degree of light intensity fluctuations caused by random refraction at the sea surface. The simulation results indicate that as the wind speed increases, the scintillation index grows and the light intensity fluctuation is more strongly influenced by the three-dimensional sea surface. When the divergence angle decreases, the received light intensity is more strongly affected by the dynamic sea surface, increasing the scintillation index of the received light. Our research findings can provide theoretical references for the laser communication channel model across the rough air-seawater interface.

1 引言

海洋环境蕴含着丰富的资源,成为国家经济和安全的重要研究领域。与声通信和射频通信等传统通信技术相比,无线光通信在水下介质中能够实现低功耗、高速率的安全传输1-3。尽管如此,水下无线光通信的性能仍然受到吸收散射和空气-海水随机界面干扰的影响4-8。针对空气-海水跨介质通信,通常使用浮标中继节点连接大气与水下,然而中继浮标通常需要提前部署且价格昂贵9-11。直接进行空气-海水通信受海面随机起伏波浪的影响,激光束在空气-海水界面发生随机折射,导致接收光产生能量衰减和光束漂移,从而产生退偏效应12-14。因此,研究随机动态海面对偏振光偏振态的影响尤为重要。

目前,研究随机海面多使用分形函数法和蒙特卡罗法,大量实验证明分形方法只适用于重力波谱,因此基于海浪谱的蒙特卡罗法模拟海面更加真实有效15-16。现阶段针对激光跨介质通信的研究大多考虑激光空气-海水传输的时、空域特性。Sahoo等17通过双向透射分布函数对光在空气-海水界面的传输进行建模,研究了不规则海面、相关气泡层和非均匀吸收散射影响下的通信信道特性。李聪等18在晴天、层云和卷云条件下,分析了光在空气-海水跨介质下行信道不同水下深度的光斑特征,但并未考虑不同风速下海面高度起伏的影响。徐正元团队19考虑了三维海面高度起伏的影响,建立并实验验证了通过动态空气-海水界面的水对空可见光通信系统,仿真和实验模拟了不同尺度波条件下信道链路增益和变化时间。通常,入射光子与介质粗糙面相互作用发生反射和折射,反射和折射光的能量与偏振状态会发生变化。Mobley20使用蒙特卡罗光线追踪研究了风致粗糙海面在可见光谱总的偏振反射率和透射特性,并给出了海面辐射反射率因子改进值。宿德志等21基于双向反射分布函数和菲涅耳反射分布函数推导了长波红外偏振度计算模型,并仿真分析了在不同风速下,红外波段不同探测角的偏振特性,在三维海面条件下分析了粗糙海面对反射光偏振态的影响。

综上所述,关于空气-海水信道的研究,较少考虑随机空气-海水界面对偏振光的影响。本文推导了光子在空气-海水界面的折射模型和Stokes矢量变化,建立了激光跨介质下行信道偏振传输模型,对偏振光在空气-海水通信系统中的应用具有参考价值。

2 基本原理

2.1 三维动态海面建模

由于风浪与水面的相互作用,真实海面呈现出无规则高低起伏。为模拟真实三维海面,近年来基于海浪谱和快速傅里叶变换的海面方法得到广泛应用。Elfouhaily海浪谱是由高频张力波和低频重力波组成的全波数谱模型,其理论统计量与Cox-Munk一致,能够很好地描述对海面光散射起主导作用的海面毛细波22

本文使用Elfouhaily海浪谱及其对应的双边方向传递函数,通过谱快速傅里叶变换的蒙特卡罗法进行三维海面建模。假设仿真海面大小为Lx×Ly,划分为Nx×Ny的规则采样网格,单位网格在xy方向的长度分别为Δx=Lx/NxΔy=Ly/Ny。网格点的空间坐标x(r)=rΔx,r=0,,Nx-1;y(s)=rΔy,s=0,,Ny-1。在任意时刻t,海面高度f(x,y,t)可以通过傅里叶逆变换表示为

f(x,y,t)=1LxLymk=-(Nx/2+1)Nx/2 nk=-(Ny/2+1)Ny/2F(kmk,knk,t)exp[-i(kmkx+knky)]F(kmk,knk,t)=2π[LxLyS(kmk,knk)]1/2exp(-iωmk,nk,t)N(0,1)+iN(0,1)2  mk0,Nx/2,and nk0,Ny/2N(0,1)                  mk=0,Nx/2,or nk=0,Ny/2

式中:kmk=2πmk/Lxknk=2πnk/Ly,分别为xy方向的波数;N(0,1)是均值为0方差为1的随机数;S(kmk,knk)为Elfouhaily海浪谱;ωmk,nk为空间频率。

图1为基于Elfouhaily海浪谱模拟仿真生成的不同风速下的三维海面。

图 1. 不同风速下的三维海面。(a)风速为5 m/s;(b)风速为10 m/s;(c)风速为15 m/s;(d)风速为10 m/s时三维海面的局部放大图

Fig. 1. Three-dimensional sea surfaces under different wind speeds. (a) Wind speed is 5 m/s; (b) wind speed is 10 m/s; (c) wind speed is 15 m/s; (d) partial enlarged view of three-dimensional sea surface at wind speed of 10 m/s

下载图片 查看所有图片

图1可以看出,随着风速变大,海面高度起伏逐渐增加,海浪波长尺寸也逐渐变大。通过图1(d)的局部放大图可以看出,通过谱傅里叶变换生成的三维海面表面粗糙,海面毛细波随机起伏。对图1(a)~(c)中不同风速下三维海面的海面倾斜角进行统计,结果如图2所示。

图 2. 不同风速下海面倾斜角分布概率密度

Fig. 2. Probability density of sea surface inclination angle distribution under different wind speeds

下载图片 查看所有图片

由图中统计的风速分别为5、10、15 m/s三维海面的海面倾斜角分布概率密度可以看出,随风速变大,海面倾斜角分布逐渐分散,向大角度移动。以海面倾斜角均方斜率表征海面粗糙度,统计不同风速下相关数据如表1所示,随着风速变大,海面高度起伏变大,三维海面的均方高度和均方斜率逐渐增大,说明随着风速的增大,海面逐渐变得粗糙,海面倾斜角波动范围也随之变大,光子在穿过海面时,发生折射时的海面倾斜角度也更加随机。

表 1. 不同风速下海面倾斜角相关统计数据

Table 1. Statistical data related to sea surface inclination angle under different wind speeds

Wind speed /(m·s-1Minimum sea surface height /mMaximum sea surface height /mMean square value of sea surface heightAverage inclination angleof sea surface θ /radMean square slopeof sea surface
5-0.91281.09430.05940.19910.0535
10-4.21643.88571.23710.24890.0861
15-3.59935.32313.18000.27220.1041

查看所有表

2.2 风致波浪水下偏振度仿真

激光跨介质下行通信系统在传输时依次经过大气信道吸收散射、空气-海水界面折射以及海水的吸收散射。图3为跨介质通信系统模型示意图。

图 3. 激光跨介质下行链路通信系统

Fig. 3. Laser cross medium downlink communication system

下载图片 查看所有图片

光子在空气和海水中传输被视为经历单分散体系Mie散射,Mie散射相函数与散射Muller矩阵根据Mie理论计算得到23-24。光子在大气和海水信道中经过多次散射并随机改变传输方向,使光产生退偏。使用Stokes矢量和Muller矩阵描述光子在信道中发生散射和折射,得到接收光的偏振态。Stokes矢量定义为

S=[I,Q,U,V]T

根据Stokes矢量计算偏振度公式如下25-26

PDOP=Q2+U2+V2I

当光到达空气-海水界面时,发生折射,光子偏振态随之改变,折射前后Stokes矢量更新计算公式27

Snew=R(-it)MrefR(ii)Sold

式中:Sold是光子在大气中发生折射前的Stokes矢量;Snew是光子发生折射后的Stokes矢量;R(i)为与入射方向和折射方向有关的旋转矩阵;Mref是折射Muller矩阵。因此,在折射Stokes矢量更新过程中,求解旋转矩阵角度iiit和折射Muller矩阵Mref是关键问题,通过求解上述三个参量,即可完成光子Stokes矢量在穿越空气-海水界面发生折射时的更新。光在空气-海水界面发生折射的模型如图所4示。

图4xyz为海洋表面的宏观坐标系,OZ'为平静海面的整体法向量,IO是入射光线的传输方向,平面IOZ'定义为入射光子午面,NO是宏观坐标系下入射光所对应的海面入射点的法向量,OT是宏观坐标系下光线的折射方向,平面TOZ'为折射光子午面。偏振光折射的Stokes矢量更新方式如下,入射光Stokes矢量先从子午面IOZ'旋转到折射平面TNIO,与折射Muller矩阵Mref相乘后,再将其旋转至新的子午面TOZ',最终得到在折射子午面内的Stokes矢量。iiit的具体求解过程如下:

图 4. 倾斜海平面Stokes折射模型

Fig. 4. Stokes refraction model for tilted sea surface

下载图片 查看所有图片

首先,根据生成的三维海面网格信息和入射光方向得到光在海面的入射点位置及其法向量。计算得到入射点倾斜海面微面元倾斜角θn、入射角θi(入射光线与z轴反方向之间的夹角)。

其次,根据球面三角余弦定理求折射旋转角ii,平面ION与平面Z'ON之间的夹角γi,平面TON与平面Z'ON之间的夹角γt

ii=arccoscos NOZ'-cos θicos IONsin θisin ION

式中:NOZ'=π-θnION=π-θi'

γi=arccoscos θi-cos NOZ'cos IONsin NOZ'sin ION,            iiπ2π-arccoscos θi-cos NOZ'cos IONsin NOZ'sin ION, ii>πγt=π-γi

最后,根据球面三角余弦定理求得折射平面TNIO与折射方向子午面TOZ'的夹角it

         Z'OT=arccos [cos (π-θn)cos NOT+                      sin (π-θn)sin NOTcos γt]it=arccos cos (π-θn)-cos Z'OTcos NOTsin Z'OTsin NOT

式中,NOT是折射方向与倾斜微面元法向量之间的夹角。

对于空气-海水界面的折射,假定发生折射时的入射角为θi,折射角为θt,折射Muller矩阵可表示为

Mtrans=12ntcos θtnicos θit2+t2t2-t200t2-t2t2+t200002Rett*2Imtt*002Imtt*2Rett*

式中,tt分别为垂直和水平反射系数,计算方式如下:

t=2nicos θinicos θi+nt2-ni2sin2θit=2nintcos θint2cos θi+nint2-ni2sin2θi

3 分析与讨论

光子在空气-海水信道中传输时,发生吸收散射和随机倾斜海面的折射,在不同风速下,三维粗糙海面和海面倾斜角随机变化。使用多次大气Mie散射、三维海面折射和水下多次Mie散射描述光子的Stokes矢量变化,得到水下光子偏振度。本节通过改变海面风速和光束发散角对接收光偏振度和闪烁指数进行仿真计算。

为探究海面风速对水下偏振度的影响,设置海面风速分别为5、10、15 m/s,仿真相应风速下水下偏振度的变化情况。设置发射激光为高斯光束,光波长为532 nm,束腰半径为3 cm,发散半角为10 mrad,发射光Stokes矢量分别为[1 0 0 1][1 1 0 0]。大气、海水信道杂质颗粒等效为球形粒子,粒子半径分别为0.5 μm和3 μm,粒子相对周围介质的复折射率为1.18-0.07i,单位体积粒子数为109,大气信道传输距离为200 m,海水信道传输距离为20~50 m。根据Mie理论计算532 nm激光在浅海中的吸收散射系数分别为0.0309/m、0.0304/m,接近Ⅰ类海水水质12。仿真不同风速下的接收偏振度结果如图5所示。

图 5. 不同风速下接收光的偏振度。(a)圆偏振光;(b)线偏振光

Fig. 5. Degrees of polarization of received light at different wind speeds. (a) Circularly polarized light; (b) linear polarized light

下载图片 查看所有图片

图5所示,改变风速大小,接收光偏振度随着风速的增加而减小,说明风速增加,穿过三维海面光子退偏更加明显,这与不同风速下的海面粗糙度呈现正相关。对比表1中的数据,风速越大,海面粗糙度越大,接收光偏振度减小。这是因为海面风速增加,光子在海面发生折射时偏离原有方向的概率越大,向外发散,在水下信道中传输的距离增加,散射次数增加,光子偏振度逐渐减小。对比图5(a)和5(b)可以看出,相同信道条件下,圆偏振光的偏振度远大于线偏振光的偏振度,保偏性能更好,受风速影响更小。

在光子的跨介质传输中,海面倾斜角大小随机,但其统计特性代表的海面粗糙度随风速的变化呈现相关规律,因此海面的随机折射致使接收端光斑位置、形状

和接收强度发生变化。如图6所示,不同风速条件下的随机海面导致了不同的接收光斑。

图 6. 不同风速下随机动态海面的接收光斑。(a)风速为5 m/s;(b)风速为10 m/s

Fig. 6. Receiving spots of random dynamic sea surface under different wind speeds. (a) Wind speed is 5 m/s; (b) wind speed is 10 m/s

下载图片 查看所有图片

因此仿真风速分别为5、10、15 m/s条件下0~20 s内接收光强的变化并计算相应条件下的闪烁指数。闪烁指数采用接收坐标范围内的光强波动进行计算,定义28

σ2=I2-I2I2

式中:表示系综平均值;I为接收光强值。

设置接收面坐标范围为-2 m≤x≤2 m,-2 m≤y≤2 m,发射光束及信道杂质颗粒条件不变,仿真得到海水信道距离为20 m时的光强波动,仿真结果如图7所示。

图 7. 不同风速下0~50 s内接收光强的波动变化

Fig. 7. Fluctuation of received light intensity within 0-50 s under different wind speeds

下载图片 查看所有图片

图7可以看出,风速由5 m/s增加到15 m/s时,风速增大,接收光强波动更加剧烈,波动变化频率减小,这与相应风速下海浪的周期是一致的,风速越大,波浪周期越长。根据接收光强计算其闪烁指数表征不同风速下的光强波动,风速为5、10、15 m/s时闪烁指数分别为0.0081、0.0125、0.0223,闪烁指数随着风速的增大而增大。

仿真研究风速为5 m/s和15 m/s时不同偏振态发射光束经过跨介质信道后的闪烁指数,设置接收面坐标范围为-2 m≤x≤2 m,-2 m≤y≤2 m,海水信道传输距离为20~50 m。风速为5 m/s时仿真结果如图8(a)所示,风速为15 m/s时仿真结果如图8(b)所示,其中S表示Stokes矢量。可以看出,随着信道距离增加,闪烁指数变大,这是因为光子发生散射的次数随着信道距离的增加而增加。对比图8(a)和8(b)不同风速条件下的接收光闪烁指数,结果表明,风速越大时,闪烁指数越大。风速变大时,海面倾斜角概率分布范围变大,经过海面随机折射的光子分布范围更加广阔,受到折射和多次散射产生的光强衰减变化差异变大,闪烁指数变大。

图 8. 不同风速下接收光的闪烁指数。(a)风速为5 m/s;(b)风速为15 m/s

Fig. 8. Scintillation indecies of received light under different wind speeds. (a) Wind speed is 5 m/s; (b) wind speed is 15 m/s

下载图片 查看所有图片

在10 m/s风速条件下,探究光束发散角对动态空气-海水信道闪烁指数的影响。设置发射激光的Stokes矢量为[1 1 0 0],接收面坐标范围为-2 m≤x≤2 m,-2 m≤y≤2 m,光束发散角分别为2、5、7 mrad,仿真结果如图9所示。光束发散角变小,闪烁指数逐渐变大。当光束发散角变小时,光束到达空气-海水界面集中在海面更小的区域,受到海浪影响,光束偏离光轴折射,产生随机漂移,接收光强随机起伏变大,闪烁指数增大;相反地,光束发散角变大时,光束到达空气-海水界面时分布在更大的区域,海面毛细波使光束折射时某些光子靠近光轴,闪烁指数减小。

图 9. 不同光束发散角下接收光的闪烁指数

Fig. 9. Scintillation indecies of received light under different beam divergence angles

下载图片 查看所有图片

4 结论

本文建立了海面风速影响下的激光跨空气-海水界面的偏振光传输模型。通过改变海面风速、链路距离和激光束发散角,对接收端光束的偏振度和闪烁指数进行了统计。海面风速影响了三维海面的倾斜角统计分布变化,同时影响了海面粗糙度。风速越大,海面粗糙度越大,水下光子束偏振度降低;信道链路距离越长,偏振度越低。而闪烁指数则衡量了海面随机折射对光强变化程度的影响,仿真结果表明,风速越大,闪烁指数越大,光强起伏受三维海面影响更大;当发散角变小,闪烁指数逐渐增大。本文研究结果可为激光跨粗糙空气-海水界面的光通信信道模型的研究提供理论参考。

参考文献

[1] Yang X Q, Tong Z J, Dai Y Z, et al. 100 m full-duplex underwater wireless optical communication based on blue and green lasers and high sensitivity detectors[J]. Optics Communications, 2021, 498: 127261.

[2] Lu Z L, Shen C, Shi J Y, et al. Security enhanced underwater visible light communication system based on chaotic phase scrambling and conjugate frequency hopping[J]. Chinese Optics Letters, 2023, 21(6): 060602.

[3] 季秀阳, 殷洪玺, 景连友, 等. 基于强波动理论的强湍流信道水下无线光通信系统性能分析[J]. 光学学报, 2022, 42(18): 1801001.

    Ji X Y, Yin H X, Jing L Y, et al. Performance analysis of underwater wireless optical communication system with strong turbulence channels based on strong fluctuation theory[J]. Acta Optica Sinica, 2022, 42(18): 1801001.

[4] Alharbi O, Xia W T, Wang M H, et al. Measuring and modeling the air-sea interface and its impact on FSO systems[J]. Laser Communication and Propagation through the Atmosphere and Oceans VII, 2018, 10770: 1077002.

[5] Qin J J, Fu M, Zheng B. Analysis of wavy surface effects on the characteristics of wireless optical communication downlinks[J]. Optics Communications, 2022, 507: 127623.

[6] Gabriel C, Khalighi M-A, Bourennane S, et al. Monte-Carlo-based channel characterization for underwater optical communication systems[J]. Journal of Optical Communications and Networking, 2013, 5(1): 1-12.

[7] D'Alimonte D, Kajiyama T. Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface[J]. Optics Express, 2016, 24(8): 7922-7942.

[8] 王明军, 王宇航, 陈丹, 等. 二维动态海面-气泡层中蓝绿激光的透射特性[J]. 光学学报, 2022, 42(2): 0214001.

    Wang M J, Wang Y H, Chen D, et al. Transmission characteristics of blue-green laser through two-dimensional dynamic sea surface-bubble layer[J]. Acta Optica Sinica, 2022, 42(2): 0214001.

[9] Estes L E, Garcia R A, Lizotte C D. Underwater vehicles equipped with laser beacons and tracked from aircraft[J]. Applied Optics, 1996, 35(24): 4843-4849.

[10] 饶浩. 应用于海上浮标的卫星通信终端关键技术研究[D]. 北京: 中国科学院国家空间科学中心, 2020.

    RaoH. Research on key technologies of satellite communication terminals for maritime buoys[D]. Beijing: National Space Science Center, Chinese Academy of Sciences, 2020.

[11] 董科研, 姜会林, 佟首峰. 对潜激光通信[J]. 四川兵工学报, 2012, 33(7): 127-130.

    Dong K Y, Jiang H L, Tong S F. Submarine laser communication[J]. Journal of Sichuan Ordnance, 2012, 33(7): 127-130.

[12] 周洁. 偏振光在近海面的传输特性研究[D]. 苏州: 苏州大学, 2020.

    ZhouJ. Study on the transmission characteristics of polarized light near the sea surface[D].Suzhou: Soochow University, 2020.

[13] Foster R, Gilerson A. Polarized transfer functions of the ocean surface for above-surface determination of the vector submarine light field[J]. Applied Optics, 2016, 55(33): 9476-9494.

[14] 张凡, 罗江华, 李军, 等. 光束跨波动水空界面传输的表征与验证[J]. 中国激光, 2023, 50(19): 1905001.

    Zhang F, Luo J H, Li J, et al. Characterization and validation of beam transmission through wavy water-to-air surface[J]. Chinese Journal of Lasers, 2023, 50(19): 1905001.

[15] CurtisM. Ocean optics book[EB/OL]. [2023-11-09]. https:∥oceanopticsbook.info.

[16] 贾佳. 海面建模与绘制技术研究[D]. 天津: 天津大学, 2012.

    JiaJ. Research on ocean surface modeling and rendering technique[D]. Tianjin: Tianjin University, 2012.

[17] Sahoo R, Sahu S K, Shanmugam P. Estimation of the channel characteristics of a vertically downward optical wireless communication link in realistic oceanic waters[J]. Optics & Laser Technology, 2019, 116: 144-154.

[18] 李聪, 袁瑞蔓, 高洪, 等. 不同天气条件下蓝绿激光下行跨介质传输特性[J]. 光子学报, 2021, 50(12): 1201003.

    Li C, Yuan R M, Gao H, et al. Characteristics of blue-green laser downlink cross-media transmission under different weather conditions[J]. Acta Photonica Sinica, 2021, 50(12): 1201003.

[19] Zhang F, Luo J H, Li J, et al. Effects of underwater swing nodes on water-to-air visible light communication[J]. Applied Optics, 2023, 62(16): 4245-4254.

[20] Mobley C D. Polarized reflectance and transmittance properties of windblown sea surfaces[J]. Applied Optics, 2015, 54(15): 4828-4849.

[21] 宿德志, 刘亮, 刘陵顺. 风速对海面长波红外偏振度的影响研究[J]. 激光与红外, 2021, 51(12): 1620-1627.

    Su D Z, Liu L, Liu L S. Research in effects of wind speed on long wave infrared polarization of sea surface[J]. Laser & Infrared, 2021, 51(12): 1620-1627.

[22] 杜延磊. 随机粗糙海面微波散射/辐射的仿真与分析:解析近似模型和数值方法[D]. 北京: 中国科学院遥感与数字地球研究所, 2019.

    DuY L. Simulations and analyses of microwave scattering and emission from randomly rough ocean surfaces: analytic approximate models and numerical methods[D]. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 2019.

[23] 赵凯华, 钟锡华. 光学[M]. 北京: 北京大学出版社, 1984: 251-254.

    ZhaoK H, ZhongX H. Optics[M]. Beijing: Peking University Press, 1984: 251-254.

[24] 张莹珞, 王英民, 黄爱萍. 米氏理论下悬浮粒子对水下激光传输的影响[J]. 中国激光, 2018, 45(5): 0505002.

    Zhang Y L, Wang Y M, Huang A P. Influence of suspended particles based on Mie theory on underwater laser transmission[J]. Chinese Journal of Lasers, 2018, 45(5): 0505002.

[25] Hansen J E, Travis L D. Light scattering in planetary atmospheres[J]. Space Science Reviews, 1974, 16(4): 527-610.

[26] Witt A N. Multiple scattering in reflection nebulae. I. A Monte Carlo approach[J]. The Astrophysical Journal Supplement, 1977, 35: 1-6.

[27] Ramella-Roman J C, Prahl S A, Jacques S L. Three Monte Carlo programs of polarized light transport into scattering media: part I[J]. Optics Express, 2005, 13(12): 4420-4438.

[28] 戴辉, 张鹏, 何爽, 等. 螺旋因斯-高斯光束海洋湍流信道传输与通信特性仿真研究[J]. 激光与光电子学进展, 60(21): 2101004.

    Dai H, Zhang P, He S, et al. Simulation study on transmission and communication characteristics of Helical Ince-Gaussian beam in ocean turbulent channel[J]. Laser & Optoelectronics Progress, 60(21): 2101004.

张建磊, 田雨欣, 王洁, 朱云周, 张鹏伟, 杨祎, 贺锋涛. 蓝绿激光跨介质下行链路的偏振传输特性[J]. 光学学报, 2024, 44(6): 0606005. Jianlei Zhang, Yuxin Tian, Jie Wang, Yunzhou Zhu, Pengwei Zhang, Yi Yang, Fengtao He. Polarization Transmission Characteristics of Blue-Green Laser in Cross-Medium Downlink[J]. Acta Optica Sinica, 2024, 44(6): 0606005.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!