光子学报, 2016, 45 (7): 070730001, 网络出版: 2016-08-18  

单层MoS2的电调制荧光光谱特性

Electrical Control of Photoluminescence Spectrum of Monolayer MoS2
作者单位
1 北京大学 电子学系 纳米器件物理与化学教育部重点实验室, 北京 100871
2 香港理工大学 应用物理系, 香港 999077
摘要
采用化学气相沉积法在氧化硅衬底上合成大面积、高质量的单层MoS2二维材料, 系统表征了材料的光学特性, 并制备出高性能的n型场效应晶体管器件.进一步研究了外加电场对其荧光光谱特性的影响.结果表明:在室温条件下, 单层MoS2的荧光光谱的最强特征峰由A-(带电激子态)、A(本征激子态)两个发光峰构成, 并且二者的特征能量差约为35 meV; 通过调节底栅电压, 测得发光峰随着栅压由负变正表现出明显的峰位红移和强度改变, 且两个子峰的强度随栅压变化表现出相反的变化趋势; 外加电场能够有效改变沟道中的载流子浓度, 进而改变单层MoS2荧光光谱的强度和发光峰形状.为研究二维材料发光特性的物理机制提供了重要依据, 此外这种器件的大规模制备为其应用于光电子学器件与系统提供了可能.
Abstract
Monolayer molybdenum disulfide (MoS2) with large area and high quality have been grown using Chemical Vapor Deposition (CVD) method. The optical properties of MoS2 was characterized systematically and high performance n-type field-effect transistors were fabricated. The effect of applied electrical field on photoluminescence (PL) spectrum of monolayer MoS2 in the devices was also studied. The results showed that the strongest emission peak of the PL spectrum of monolayer MoS2 consist of two peaks, namely A- peak (Charged Exciton) and A peak (Intrinsic Exciton) at room temperature. The energy difference between the two peaks is about 35 meV. The main PL peak shows obvious redshift and intensity change via tuning the back-gate voltage from negative to positive. We also found that the intensity of these two peaks show opposite dependence on the back-gate voltage with spectrum analysis. These results were analyzed and we concluded that the carrier concentration of monolayer MoS2 can be effectively modulated by applied electrical field, which can further affect the intensity and shape of PL spectrum. These results provide significant basis for the research on the physical mechanism of the optical properties of two-dimensional material. Besides, the large-scale preparation of such devices also make it possible to apply these two dimension materials to optoelectronics devices and systems.
参考文献

[1] GANATRA R, ZHANG Qing. Few-layer MoS2: A promising layered semiconductor[J]. ACS Nano, 2014, 8(5): 4074-4099.

[2] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150.

[3] MAK F, LEE C, HONE J, et al. Atomically thin MoS2: A new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805.

[4] YOON Y, GANAPATHI K, SALAHUDDIN S. How good can monolayer MoS2 transistors be [J]. Nano Letters, 2011, 11(9): 3768-3773.

[5] SPLENDIANI A, SUN Liang, ZHANG Yuan-bo, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275.

[6] YIN Zong-you, LI Hai, LI Hong, et al. Single-layer MoS2 Phototransistors[J]. ACS Nano, 2011, 6(1): 74-80.

[7] LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7): 497-501.

[8] SUNDARAM S, ENGEL M, LOMBARDO A, et al. Electroluminescence in single layer MoS2[J]. Nano Letters, 2013, 13(4): 1416-1421.

[9] YE Yu, YE Zi-liang, GHARGHI M, et al. Exciton-related electroluminescence from monolayer MoS2[C]. CLEO: Science and Innovations. Optical Society of America, 2014: STh4B. 4.

[10] FONTANA M, DEPPE T, BOYD A, et al. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions[J]. Scientific Reports, 2013, 3(15):1634-1634.

[11] TSAI L, SU Sheng-han, CHANG Jan-kai, et al. Monolayer MoS2 heterojunction solar cells[J]. ACS Nano, 2014, 8(8): 8317-8322.

[12] MAK F, HE Ke-liang, SHAN Jie, et al. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nature Nanotechnology, 2012, 7(8): 494-498.

[13] LEBEGUE S, ERIKSSON O. Electronic structure of two-dimensional crystals from ab initio theory[J]. Physical Review B, 2009, 79(11): 115409.

[14] RAMASUBRAMANIAM A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides[J]. Physical Review B, 2012, 86(11): 115409.

[15] QIU D, FELIPE H, LOUIE S. Optical spectrum of MoS2: many-body effects and diversity of exciton states[J]. Physical Review Letters, 2013, 111(21): 216805.

[16] BERKELBACH C, HYBERTSEN S, REICHMAN R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides[J]. Physical Review B, 2013, 88(4): 045318.

[17] ZHANG Chang-jian, WANG Hai-ning, CHAN Wei-min, et al. Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2: Experiments and theory[J]. Physical Review B, 2014, 89(20): 205436.

[18] MAK F, HE K, LEE C, et al. Tightly bound trions in monolayer MoS2[J]. Nature Materials, 2013, 12(3): 207-211.

[19] MOURI S, MIYAUCHI Y, MATSUDA K. Tunable photoluminescence of monolayer MoS2 via chemical doping[J]. Nano Letters, 2013, 13(12): 5944-5948.

[20] LI Zi-wei, YE Ru-quan, FENG Rui, et al. Graphene quantum dots doping of MoS2 monolayers[J]. Advanced Materials, 2015, 27(35): 5235-5240.

[21] KANG Yi-min, GONG Yong-ji, HU Zhi-jian, et al. Plasmonic hot electron enhanced MoS2 photocatalysis in hydrogen evolution[J]. Nanoscale, 2015, 7(10): 4482-4488.

[22] LIN Zi-yuan, ZHAO Yu-da, ZHOU Chang-jian, et al. Controllable growth of large–size crystalline MoS2 and resist-free transfer assisted with a Cu thin film[J]. Scientific Reports, 2015, 5:18596.

[23] WU Wei, DE D, CHANG Su-chi, et al. High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains[J]. Applied Physics Letters, 2013, 102(14): 142106.

[24] LI Hong, ZHANG Qing, YAP C, et al. From bulk to monolayer MoS2: Evolution of Raman scattering[J]. Advanced Functional Materials, 2012, 22(7): 1385-1390.

[25] LEE Chang-gu, YAN Hu-gen, BRUS E, et al. Anomalous lattice vibrations of single-and few-layer MoS2[J]. ACS Nano, 2010, 4(5): 2695-2700.

[26] POPOV I, SEIFERT G, TOMáNEK D. Designing electrical contacts to MoS2 monolayers: A computational study[J]. Physical Review Letters, 2012, 108(15): 156802.

[27] DAS S, CHEN Hong-yan, PENUMATCHA A, et al. High performance multilayer MoS2 transistors with scandium contacts[J]. Nano Letters, 2012, 13(1): 100-105.

王亚丽, 林梓愿, 柴扬, 王胜. 单层MoS2的电调制荧光光谱特性[J]. 光子学报, 2016, 45(7): 070730001. WANG Ya-li, LIN Zi-yuan, CHAI Yang, WANG Sheng. Electrical Control of Photoluminescence Spectrum of Monolayer MoS2[J]. ACTA PHOTONICA SINICA, 2016, 45(7): 070730001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!