光子学报, 2017, 46 (12): 1210002, 网络出版: 2017-11-23   

基于DTCWT和稀疏表示的红外偏振与光强图像融合

Infrared Polarization and Intensity Image Fusion Based on Dual-Tree Complex Wavelet Transform and Sparse Representation
作者单位
天津大学 精密仪器与光电子工程学院, 光电信息技术教育部重点实验室, 天津 300072
摘要
针对红外偏振与光强图像彼此包含共同信息和特有信息的特点, 提出了一种基于双树复小波变换和稀疏表示的图像融合方法.首先, 利用双树复小波变换获取源图像的高频和低频成分, 并用绝对值最大值法获得融合的高频成分; 然后, 用低频成分组成联合矩阵, 并使用K-奇异值分解法训练该矩阵的冗余字典, 根据该字典求出各个低频成分的稀疏系数, 通过稀疏系数中非零值的位置信息判断共有信息和特有信息, 并分别使用相应的规则进行融合; 最后, 将融合的高低频系数经过双树复小波反变换得到融合图像.实验结果表明, 本文提出的融合算法不仅能较好地凸显源图像的共有信息, 而且能很好地保留它们的特有信息, 同时, 融合图像具有较高的对比度和细节信息.
Abstract
Considering that infrared polarization and intensity image contain common information and their own unique information, a method of image fusion based on Dual-Tree Complex Wavelet Transform and sparse representation was proposed. Firstly, the high and low frequency components of source images wereobtained by using Dual-Tree Complex Wavelet Transform, and the high frequency components werecombined by absolute maximum method. Secondly, a joint matrix was constructed by low frequency components, and a redundant dictionarywas acquired by using K-singular value decomposition to train the matrix. Based on the dictionary, the sparse coefficient of low frequency component was calculated, and the common information and unique information werejudged by the location of non-zero value of the sparse coefficient, and two kinds of information was merged by proper fusion rules. Finally, the fusion image was obtained by performing inverse Dual-Tree Complex Wavelet Transform on the fused high and low frequency components. The experimental results show that the proposed fusion method can highlight the common information of source images and keep their own unique information, and the fusion image own higher contrast and clearer details.
参考文献

[1] 尹士畅, 喻松林. 基于小波变换和直方图均衡的红外图像增强[J].激光与红外, 2013, 43(2): 225-228.

    YIN Shi-chang, YU Song-lin. Infrared image enhancement algorithm based on wavelettransform and histogram equalization [J]. Laser & Infrared, 2013, 43(2): 225-228.

[2] 杨风暴, 李伟伟, 蔺素珍, 等. 红外偏振与红外光强图像的融合研究[J].红外技术, 2011, 33(5): 262-266.

    YANG Feng-bao, LI Wei-wei, LIN Su-zhen, et al. Study on fusion of infrared polarization and intensity images [J].Infrared Technology, 2011, 33(5): 262-266.

[3] 段锦, 付强, 莫春和, 等. 国外偏振成像军事应用的研究进展(上)[J].红外技术, 2014, 36(3): 190-195.

    DUAN Jin, FU Qiang, MO Chun-he, et al. Review of polarization imaging technology for international military application I [J].Infrared Technology, 2014, 36(3): 190-195.

[4] FELTON M, GURTON KP, PEZZANITI J L, et al. Measured comparison of the crossover periods for mid-and long-wave IR (MWIR and LWIR) polarimetric and conventional thermal imagery [J].Optics Express, 2010, 18(15): 15705-15713.

[5] PARIS S, HASINOFF S W, KAUTZ J. Local Laplacian filters: Edge-aware image processing with a Laplacian pyramid[J]. Communications of the ACM, 2015, 58(3): 81-91.

[6] LU H, ZHANG L, SERIKAWA S. Maximum local energy: an effective approach for multisensory image fusion in beyond wavelet transform domain [J]. Computers & Mathematics with Applications, 2012, 64: 996-1003.

[7] KONG W W, LEI Y, ZGAO H X. Adaptive fusion method of visible light and infrared images based on non-subsampled shearlet transform and fast non-negative matrix factorization [J]. Infrared Physics & Technology, 2014, 67: 161-172.

[8] ZHU P, MA X, HUANG Z. Fusion of infrared-visible images using improved multi-scale top-hat transform and suitable fusion rules[J]. Infrared Physics & Technology, 2017, 81: 282-295.

[9] BAI XZ, ZHANG Y.Detail preserved fusion of infrared and visual images by using opening and closing based toggle operator[J].Optics & Laser Technology, 2014, 63: 105-113.

[10] LI T J, WANG Y Y. Biological image fusion using a NSCT based variable-weight method[J].Information Fusion, 2011, 12: 85-92.

[11] ADU J H, GAN J H, WANG Y,et al. Image fusion based on nonsubsampled contourlet transform for infrared and visible light image[J].Infrared Physics & Technology, 2013, 61(1): 94-100.

[12] ZHANG D X, LI J X, CHEN Z H, et al. Fusion of polarization image using bidimensional empirical mode decomposition [C].Computer Science and Mechanical Automation (CSMA), 2015 International Conference on. IEEE, 2015: 206-209.

[13] ZHU P, HUANG Z, LEI H. Fusion of infrared and visible images based on BEMD and NSDFB [J]. Infrared Physics & Technology, 2016, 77: 82-93.

[14] 张雷, 罗长更, 张颖颖, 等. 基于支持度变换的红外与可见光图像融合算法 [J].激光技术, 2015, 39(3): 428-431.

    ZHANG Lei, LOU Chang-geng, ZHANG Ying-ying,et al. Fusion algorithm of infrared and visible images based on support value transform [J]. Laser Technology, 2015, 39(3): 428-431.

[15] CUI G M, FENG H J, XU Z H, et al. Detail preserved fusion of visible and infrared images using regionalsaliency extraction and multi-scale image decomposition [J].Optics Communications, 2015, 341: 199-209.

[16] XIANG T Z, YAN L, GAO R G. A fusion algorithm for infrared and visible images based on adaptivedual-channel unit-linking PCNN in NSCT domain [J]. Infrared Physics & Technology, 2015, 69: 53-61.

[17] WANG Z, MA Y, GU J, Multi-focus image fusion using PCNN [J].Pattern Recognition, 2010, 43: 2003-2016.

[18] HE C, LIU Q, LI H,et al. Multimodal medical image fusion based on HIS and PCA [J].Procedia Engineering, 2010, 7: 280-285.

[19] CVEJIC N, BULL D, CANAGARAJAH N. Region-based multimodal image fusion using ICA bases [J]. IEEE Sensors Journal, 2007, 7(5): 743-751.

[20] YANG B, LI S T. Multifocus image fusion and restoration with sparse representation [J].IEEE TransactionsonInstrumentation and Measurement, 2010, 59(4): 884-892.

[21] LI S T, YIN H T, FANG L Y. Remote sensing image fusion via sparse representations over learned dictionaries[J].IEEE Transactionson Geoscience and Remote Sensing, 2013, 51(9): 4779-4789.

[22] KIM M, HAN D K, KO H. Joint patch clustering-based dictionary learning for multimodal imageFusion [J].Information Fusion, 2016, 27: 198-214.

[23] LIU Y, LIU S P, WANG Z F. A general framework for image fusion based on multi-scale transformand sparse representation [J].Information Fusion, 2015, 24: 147-164.

[24] YU N N, QIU T S, BI F,et al.Image Features extraction and fusion based on joint sparse representation [J].IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 1074-1082.

[25] 王昕, 吉桐伯, 刘富. 结合目标提取和压缩感知的红外与可见光图像融合[J]. 光学 精密工程, 2016, 24(7): 1743-1753.

    WANG Xin, JI Tong-bo, LIU Fu. Fusion of infrared and visible images based on target segmentation and compressed sensing[J]. Optics and Precision Engineering, 2016, 24(7): 1743-1753.

[26] YANG B, LI S T. Pixel-level image fusion with simultaneous orthogonal matching pursuit [J].Information Fusion, 2012, 13: 10-19.

[27] KINGSBURY N. Image processing with complex wavelets[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1999, 357(1760): 2543-2560.

[28] 张翔, 张建奇, 秦翰林,等. 基于对偶树复小波变换的红外弱小目标背景抑制[J].光子学报, 2010, 39(9): 1672-1677.

    ZHANG Xiang, ZHANG Jian-qi, QIN Han-lin,et al.Dual-tree complex wavelet transform for infrared dim target background suppression [J].Acta Photonica Sinica, 2010, 39(9): 1672-1677.

[29] 殷明, 庞纪勇, 魏远远, 等. 结合 NSDTCT 和稀疏表示的遥感图像融合[J]. 光子学报, 2016, 45(1): 0110002.

    YIN Ming, PANG Ji-yong, WEI Yuan-yuan,et al. Remote sensing image fusion based on non-subsampled dual-tree complex wavelet transform and sparse representation[J].Acta Photonica Sinica, 2016, 45(1): 0110002.

[30] ZHENG Z, YONG X, JIAN Y,et al.A survey of sparse representation: algorithms and applications [J].IEEE. Translations and Content Mining, 2015, 3: 490-530.

[31] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].IEEE Transactionson Signal Processing, 2006, 54(11): 4311-4322.

[32] TROPP J, GILBERT A C. Signal recovery from partial information via orthogonal matching pursuit[J]. IEEE Transactions Information Theory, 2007, 53(12): 4655-4666.

[33] YAND F B, WEI H. Fusion of infrared polarization and intensity images using support valuetransform and fuzzy combination rules [J]. Infrared Physics & Technology, 2013, 60: 235-243.

朱攀, 刘泽阳, 黄战华. 基于DTCWT和稀疏表示的红外偏振与光强图像融合[J]. 光子学报, 2017, 46(12): 1210002. ZHU Pan, LIU Ze-yang, HUANG Zhan-hua. Infrared Polarization and Intensity Image Fusion Based on Dual-Tree Complex Wavelet Transform and Sparse Representation[J]. ACTA PHOTONICA SINICA, 2017, 46(12): 1210002.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!