发光学报, 2014, 35 (1): 1, 网络出版: 2014-01-17   

氧化锌基材料、异质结构及光电器件

ZnO-based Matierial, Heterojunction and Photoelctronic Device
作者单位
1 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春130033
2 中国科学院清洁能源前沿研究重点实验室 北京新能源材料与器件重点实验室 中国科学院物理研究所 北京凝聚态物理国家实验室, 北京100190
3 南京大学 电子科学与工程学院和南京微结构国家实验室(筹), 江苏 南京210046
4 中国矿业大学 物理学院, 江苏 徐州221116
5 东南大学 生物科学与医学工程学院 生物电子学国家重点实验室, 江苏 南京210096
6 中山大学 光电材料与技术国家重点实验室, 广东 广州510275
7 香港科技大学 物理系, 香港999077
8 吉林大学电子科学与工程学院 集成光子学国家重点实验室, 吉林 长春130012
9 大连理工大学 物理与光电工程学院, 辽宁 大连116023
引用该论文

申德振, 梅增霞, 梁会力, 杜小龙, 叶建东, 顾书林, 吴玉喜, 徐春祥, 朱刚毅, 戴俊, 陈明明, 季旭, 汤子康, 单崇新, 张宝林, 杜国同, 张振中. 氧化锌基材料、异质结构及光电器件[J]. 发光学报, 2014, 35(1): 1.

SHEN De-zhen, MEI Zeng-xia, LIANG Hui-li, DU Xiao-long, YE Jian-dong, GU Shu-lin, WU Yu-xi, XU Chun-xiang, ZHU Gang-yi, DAI Jun, CHEN Ming-ming, JI Xu, TANG Zi-kang, SHAN Chong-xin, ZHANG Bao-lin, DU Guo-tong, ZHANG Zhen-zhong. ZnO-based Matierial, Heterojunction and Photoelctronic Device[J]. Chinese Journal of Luminescence, 2014, 35(1): 1.

参考文献

[1] Zu P, Tang Z K, Wong G K L, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature [J]. Solid State Commun., 1997, 103(8):459-463.

[2] Service R F. Will UV lasers beat the blues [J].Science, 1997, 276(5314):895.

[3] Bertazzi F, Penna M, Goano M, et al. Theory of high field carrier transport and impact ionization in ZnO [J]. SPIE, 2010, 7603:760303-1-10.

[4] Ye J D, Tan S T, Pannirselvam S, et al. Surfactant effect of arsenic doping on modification of ZnO (0001) growth kinetics [J]. Appl. Phys. Lett., 2009, 95(10):101905-1-3.

[5] Pierce J M, Adekore B T, Davis R F, et al. Growth of dense ZnO films via MOVPE on GaN(0001) epilayers using a low/high-temperature [J]. J. Cryst.Growth, 2005, 277(1-4):345-351.

[6] Nishinaka H, Fujita S. Step-flow growth of homoepitaxial ZnO thin films by ultrasonic spray-assisted MOVPE [J].J. Cryst. Growth, 2008, 310(23):5007-5010.

[7] Thiandoume C, Lusson A, Galtier P, et al. Temperature dependence of Zn1-xMgxO films grown on c-plane sapphire by metal organic vapor phase epitaxy [J]. J. Cryst. Growth, 2010, 312(9):1529-1533.

[8] Yuan H T, Zeng Z Q, Mei Z X, et al. Surfactant effects of lithium dopant during molecular beam epitaxy of ZnO films [J]. J. Phys.: Condens. Matter, 2007, 19(48):482001-1-7.

[9] Zhang L, Tang H F, Kuech T F. Effect of Sb as a surfactant during the lateral epitaxial overgrowth of GaN by metal organic vapor phase epitaxy [J].Appl. Phys. Lett., 2001, 79(19):3059-3061.

[10] Zhang L, Tang H F, Schieke J, et al. The addition of Sb as a surfactant to GaN growth by metal organic vapor phase epitaxy [J].J. Appl. Phys., 2002, 92(5):2304-2309.

[11] Heying B, Wu X H, Keller S, et al. Role of threading dislocation structure on the X-ray diffraction peak widths in epitaxial GaN films [J]. Appl. Phys. Lett., 1996, 68(5):643-645.

[12] Northrup J E, Neugebauer J. Theory of GaN(1010) and (1120) surfaces [J]. Phys. Rev. B, 1996, 53(16):R10477-1-9.

[13] Lymperakis L, Neugebauer J. Large anisotropic adatom kinetics on nonpolar GaN surfaces:Consequences for surface morphologies and nanowire growth [J].Phys. Rev. B, 2009, 79(24):241308-1-4.

[14] Cho M W, Setiawan A, Ko K J, et al. ZnO epitaxial layers grown on c-sapphire substrate with MgO buffer by plasma-assisted molecular beam epitaxy (P-MBE) [J]. Semicond. Sci. Technol., 2005, 20(4):S13-S21.

[15] Ohmoto A, Tsukazaki A. Pulsed laser deposition of thin films and superlattices based on ZnO [J].Semicond. Sci. Technol., 2005, 20(4):S1-S12.

[16] Zhu J J, Lin B X, Yao R, et al. Hitero-epitaxy ZnO/SiC/Si(111) by LP-MOCVD [J]. Chin. J. Semicond.(半导体学报), 2004, 25(12):1662-1665 (in Chinese).

[17] Yoo Y Z, Sekiguchi T, Chikyow T, et al. V defects of ZnO thin films grown on Si as an ultraviolet optical path [J]. Appl. Phys. Lett., 2004, 84(4):502-504.

[18] Kawamoto N, Fujita M, Tatsumi T, et al. Growth of ZnO on Si substrate by plasma-assisted molecular beam epitaxy [J]. Jpn. J. Appl. Phys., 2003, 42:7209-7212.

[19] Yang W, Hullavarad S S, Nagaraj B, et al. Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors [J]. Appl. Phys. Lett., 2003, 82(20):3424-3426.

[20] Jin C M, Wei W, Zhou H H, et al. Epitaxial growth and Ohmic contacts in MgxZn1-xO/TiN/Si(111) heterostructures [J]. Appl. Phys. Lett., 2008, 93(25):251102-1-3.

[21] Koike K, Ham K, Nakashima I, et al. Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)-oriented Si substrate toward UV-detector applications [J]. J. Cryst. Growth, 2005, 278(1-4):288-292.

[22] Wan X N, Wang Y, Mei Z X, et al. Low-temperature engineering for high-quality epitaxy of ZnO film on Si(111) substrate [J]. Appl. Phys. Lett., 2007, 90(15):151912-1-3.

[23] Yoo Y Z, Sekiguchi T, Chikyow T, et al. V defects of ZnO thin films grown on Si as an ultraviolet optical path [J]. Appl. Phys. Lett., 2004, 84(4):502-504.

[24] Lin C C, Chen S Y, Cheng S Y, et al. Properties of nitrogen-implanted p-type ZnO films grown on Si3N4/Si by radio-frequency magnetron sputtering [J]. Appl. Phys. Lett., 2004, 84(24):5040-5042.

[25] Lin B X, Fu Z X, Jia Y B. Green luminescent center in undoped zinc oxide films deposited on silicon substrates [J].Appl. Phys. Lett., 2001, 79(7):943-945

[26] Meyer B K, Alve H S, Hofmann D M, et al. Bound exciton and donor-acceptor pair recombinations in ZnO [J]. Phys. Stat. Sol. (b), 2004, 241(2):231-260.

[27] Teke A, zgür , Do an S, et al. Excitonic fine structure and recombination dynamics in single-crystalline ZnO [J]. Phys. Rev. B, 2004, 70(19):195207-1-10.

[28] Ko H J, Chen Y F, Zhu Z, et al. Photoluminescence properties of ZnO epilayers grown on CaF2(111) by plasma assisted molecular beam epitaxy [J]. Appl. Phys. Lett., 2000, 76(14):1905-1907

[29] Hwang H Y, Iwasa Y, Kawasaki M, et al. Emergent phenomena at oxide interfaces [J]. Nat. Mater., 2012, 11:103-113.

[30] Sasa S, Ozaki M, Koike K, et al. High-performance ZnO/ZnMgO field-effect transistors using a hetero-metal-insulator-semiconductor structure [J]. Appl. Phys. Lett., 2006, 89(5):053502-1-3.

[31] Bernardini F, Fiorentini V, Vanderbilt D. Spontaneous polarization and piezoelectric constants ofⅢ-Ⅴ nitrides [J]. Phys. Rev. B, 1997, 56:R10024-R10027.

[32] Roessler D M, Walker W C, Loh E. Electronic spectrum of crystalline beryllium oxide [J].J. Phys. Chem. Solids, 1969, 30(1):157-167.

[33] Tsukazaki A, Akasaka A S, Nakahara K, et al. Observation of the fractional quantum Hall effect in an oxide [J]. Nat. Mater., 2010, 9:889-893.

[34] Ye J D, Pannirselvam S, Lim S T, et al. Two-dimensional electron gas in Zn-polar ZnMgO/ZnO heterostructure grown by metal-organic vapor phase epitaxy [J]. Appl. Phys. Lett., 2010, 97(11):111908-1-3.

[35] Tampo H, Shibata H, Maejima K, et al. Polarization-induced two-dimensional electron gases in ZnMgO/ZnO heterostructures [J]. Appl. Phys. Lett., 2008, 93(20):202104-1-3.

[36] Smorchkova I P, Elsass C R, Ibbetson J P, et al. Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy [J]. J. Appl. Phys., 1999, 86(8):4520-4526.

[37] Reinle-Schmitt M L, Cancellieri C, Li D, et al. Tunable conductivity threshold at polar oxide interfaces [J]. Nat. Commun., 2012, 3:932-1-5.

[38] Xie Y W, Hikita Y, Bell C, et al. Control of electronic conduction at an oxide heterointerface using surface polar adsorbates [J]. Nat. Commun., 2011, 2:494-1-18.

[39] Ye J D, Lim S T, Bosman M, et al. Spin-polarized wide electron slabs in functionally graded polar oxide heterostructures [J]. Sci. Rep., 2012, 2:533-1-8.

[40] Falson J, Maryenko D, Kozuka Y, et al. Magnesium doping controlled density and mobility of two-dimensional electron gas in MgxZn1-xO/ZnO heterostructures [J]. Appl. Phys. Exp., 2011, 4(9):091101-1-3.

[41] Tang K, Gu S L, Li S Z, et al. Influence of thermally diffused aluminum atoms from sapphire substrate on the properties of ZnO epilayers grown by metal-organic chemical vapor deposition [J]. J. Vac. Sci. Technol. A, 2011, 29(3):03A106-03A107.

[42] Tang K, Gu S L, Ye J D, et al. Temperature-dependent exciton-related transition energies mediated by carrier concentrations in unintentionally Al-doped ZnO films [J]. Appl. Phys. Lett., 2013, 102(22):221905-1-3.

[43] Zhang Y C, Fu W Y, Humphreys C, et al. Structural characterisation of improved GaN epilayers grown on a Ge(111) substrate [J]. Appl. Phys. Exp., 2011, 4(9):091101-1-3.

[44] Ye J D, Lim S T, Gu S L, et al. Origin and transport properties of two-dimensional electron gas at ZnMgO/ZnO interface grown by MOVPE [J]. Phys. Stat. Sol. (c), 2013, 10(10):1268 -1671.

[45] Han K, Tang N, Ye J D, et al. Spin-polarized two-dimensional electron gas in undoped MgxZn1-xO/ZnO heterostructures [J]. Appl. Phys. Lett., 2012, 100(19):192105-1-3.

[46] Chen H, Gu S L, Liu J G, et al. Two-dimensional electron gas related emissions in ZnMgO/ZnO heterostructures [J]. Appl. Phys. Lett., 2011, 99(21):211906-1-3.

[47] Makino T, Segawa Y, Tsukazaki A, et al. Magneto-photoluminescence of charged excitons from MgxZn1-xO/ZnO heterojunctions [J]. Phys. Rev. B, 2013, 87(8):085312-1-7.

[48] Elhamri S, Saxler A, Mitchel W C, et al. Study of deleterious aging effects in GaN/AlGaN heterostructures [J]. J. Appl. Phys., 2003, 93(2):1079-1082.

[49] Biswas M, Jung Y, Kim H, et al. Microscopic origins of the surface exciton photoluminescence peak in ZnO nanostructures [J]. Phy. Rev. B, 2011, 83(23):235320-1-10.

[50] Travnikov V V, Freiberg A, Savikhin S F. Surface excitons in ZnO crystals [J]. J. Lumin., 1990, 47(3):107-111.

[51] Ye Z Z, Zhang Y Z, Chen H H, et al. Fabrication and properties of ZnO photoconductive UV detector [J]. Acta Electronic Sinica (电子学报), 2003, 31(11):1605-1607 (in Chinese).

[52] Gao H, Deng H, Li Y. ZnO Shoterky barrier UV photodetector [J].Chin. J. Lumin. (发光学报), 2005, 26(1):135-139.

[53] Xu Q A, Zhang J W, Ju K R, et al. ZnO thin film photoconductive ultraviolet detector with fast photoresponse [J]. J. Cryst. Growth, 2006, 289(1):44-47.

[54] Bi Z, Zhang J, Bian X, et al. A high-performance ultraviolet photoconductive detector based on a ZnO film grown by RF sputtering [J]. J. Electron. Mater., 2008, 37(5):760-763.

[55] Liu J S, Shan C X, Li B H, et al. High responsivity ultraviolet photodetector realized via a carrier-trapping process [J]. Appl. Phys. Lett., 2010, 97(25):251102-1-3.

[56] Zhang T C, Guo Y, Mei Z X, et al. Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulator-MgO/p-Si [J]. Appl. Phys. Lett., 2009, 94(11):113508-1-3.

[57] Monroy E, Omnes F, Calle F. Wide-bandgap semiconductor ultraviolet photodetectors [J].Semicond. Sci. Technol., 2003, 18(14):R33-R51.

[58] Shibata H, Tampo H, Matsubara K, A, et al. Photoluminescence characterization of Zn1-xMgxO epitaxial thin films grown on ZnO by radical source molecular beam epitaxy [J]. Appl. Phys. Lett., 2007, 90(12):124104-1-3.

[59] Tampo H, Shibata H, Matsubara K, et al. Two-dimensional electron gas in Zn polar ZnMgO/ZnO heterostructures grown by radical source molecular beam epitaxy [J]. Appl. Phys. Lett., 2006, 89(13):132113-1-3.

[60] Tsukazaki A, Yuji H, Akasaka S, et al. High electron mobility exceeding 104 cm2·V-1·s-1 in MgxZn1-xO/ZnO single heterostructures grown by molecular beam epitaxy [J]. Appl. Phys. Exp., 2008, 1(5):055004-1-3.

[61] Tsukazaki A, Akasaka S, Nakahara K, et al. Observation of the fractional quantum Hall effect in an oxide [J]. Nat. Mater., 2010, 9:889-893.

[62] Sarver J F, Katnack F L, Hummel F A. Phase equilibria and manganese-activated fluorescence in the system Zn3(PO4)2-Mg3(PO4)2 [J]. J. Electrochem. Soc., 1959, 106:960-963.

[63] Ohtomo A, Kawasaki M, Koida T, et al. MgxZn1-xO as a Ⅱ-Ⅵ widegap semiconductor alloy [J]. Appl. Phys. Lett., 1998, 72(19):2466-2468.

[64] Tampo H, Shibata H, Maejima K, et al. Strong excitonic transition of Zn1-xMgxO alloy [J]. Appl. Phys. Lett., 2007, 91(26):261907-1-3.

[65] Takagi T, Tanaka H, Fujita S, et al. Molecular beam epitaxy of high magnesium content single-phase wurzite MgxZn1-xO alloys (x≈0.5) and their application to solar-blind region photodetectors [J]. Jpn. J. Appl. Phys., 2003, 42:L401-L403.

[66] Tanaka H, Fujita S, Fujita S. Fabrication of wide-band-gap MgxZn1-xO quasi-ternary alloys by molecular-beam epitaxy [J]. Appl. Phys. Lett., 2005, 86(19):192911-1-3.

[67] Ohtomo A, Kawasaki M, Ohkubo I, et al. Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices [J]. Appl. Phys. Lett., 1999, 75(7):980-982.

[68] Makino T, Chia C H, Tuan N T, et al. Room-temperature luminescence of excitons in ZnO/(Mg, Zn)O multiple quantum wells on lattice-matched substrates [J]. Appl. Phys. Lett., 2000, 77(7):975-977.

[69] Ohtomo A, Tamura K, Kawasaki M, et al. Room-temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices [J]. Appl. Phys. Lett., 2000, 77(14):2204-2206.

[70] Sun H D, Makino T, Tuan N T, et al. Stimulated emission induced by exciton-exciton scattering in ZnO/ZnMgO multiquantum wells up to room temperature [J]. Appl. Phys. Lett., 2000, 77(26):4250-4252.

[71] Makino T, Tuan N T, Su H D, et al. Temperature dependence of near ultraviolet photoluminescence in ZnO/(Mg, Zn)O multiple quantum wells [J]. Appl. Phys. Lett., 2001, 78(14):1979-1981.

[72] Tsukazaki A, Ohtomo A, Kawasaki M. High-mobility electronic transport in ZnO thin films [J]. Appl. Phys. Lett., 2006, 88(15):152106-1-3.

[73] Tsukazaki A, Ohtomo A, Kita T, et al. Quantum Hall effect in polar oxide heterostructures [J]. Science, 2007, 315:1388-1391.

[74] Tampo H, Shibata H, Maejima K, et al. Polarization-induced two-dimensional electron gases in ZnMgO/ZnO heterostructures [J]. Appl. Phys. Lett., 2008, 93(20):202104-1-3.

[75] Nakano M, Tsukazaki A, Ohtomo A, et al. Electronic-field control of two-dimensional electrons in polymer-gated-oxide semiconductor heterostructures [J]. Adv. Mater., 2010, 22:876-879.

[76] Du X L, Mei Z X, Liu Z L, et al. Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors [J]. Adv. Mater., 2009, 21:4625-4630.

[77] Liu Z L, Mei Z X, Zhang T C, et al. Solar-blind 4.55 eV band gap Mg0.55Zn0.45O components fabricated using quasi-homo buffers [J]. J. Cryst. Growth, 2009, 311(18):4356-4359

[78] Liang H L, Mei Z X, Zhang Q H, et al. Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors [J]. Appl. Phys. Lett., 2011, 98(22):221902-1-3.

[79] Zhang T C, Guo Y, Mei Z X, et al. Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulator-MgO/p-Si [J]. Appl. Phys. Lett., 2009, 94(11):113508-1-3.

[80] Hou Y N, Mei Z X, Liu Z L, et al. Mg0.55Zn0.45O solar-blind ultraviolet detector with high photoresponse performance and large internal gain [J]. Appl. Phys. Lett., 2011, 98(10):103506-1-3.

[81] Hou Y N, Mei Z X, Liang H L, et al. Comparative study of n-MgZnO/p-Si ultraviolet-B photodetector performance with different device structures [J]. Appl. Phys. Lett., 2011, 98(26):263501-1-3.

[82] Hou Y N, Mei Z X, Liang H L, et al. Annealing effects of Ti/Au contact on n-MgZnO/p-Si ultraviolet-B photodetectors [J]. IEEE Trans. Elect. Dev., 2013, (60):3474-3477.

[83] Hou Y N, Mei Z X, Liang H L, et al. Dual-band MgZnO ultraviolet photodetector integrated with Si [J]. Appl. Phys. Lett., 2013, 102(15):153510-1-4.

[84] Godin T J, La Femina J P. Atomic and electronic structure of the corundum (α-alumina) (0001) surface [J]. Phys. Rev. B, 1994, 49:7691-7696.

[85] Soares E A, Van Hove M A, Walters C F, et al. Structure of the α-Al2O3(0001) surface from low-energy electron diffraction:Al termination and evidence for anomalously large thermal vibrations [J]. Phys. Rev. B, 2002, 65(19):195405-1-13.

[86] He X, Gu L, Guo S D, et al. Oxygen polarity and interfacial atomic arrangement in an MgxZn1-xO/C-MgO/sapphire heterostructure [J]. J. Phys. D:Appl. Phys., 2013, 46(14):145303-1-5.

[87] Xie M H, Seutter S M, Zhu W K, et al. Anisotropic step-flow growth and island growth of GaN(0001) by molecular beam epitaxy [J]. Phys. Rev. Lett., 1999, 82:2749-2752.

[88] Sawai Y, Hazu K, Chichibu S F. Surface stoichiometry and activity control for atomically smooth low dislocation density ZnO and pseudomorphic MgZnO epitaxy on a Zn-polar ZnO substrate by the helicon-wave-excited-plasma sputtering epitaxy method [J]. J. Appl. Phys., 2010, 108(6):063541-1-8.

[89] Ju Z G, Shan C X, Jiang D Y, et al. MgxZn1-xO-based photodetectors covering the whole solar-blind spectrum range [J]. Appl. Phys. Lett., 2008, 93(17):173505-1-3.

[90] Wang L K, Ju Z G, Zhang J Y, et al. Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices [J]. Appl. Phys. Lett., 2009, 95(13):131113-1-3.

[91] Zheng Q H, Huang F, Ding K, et al. MgZnO-based metal-semiconductor-metal solar-blind photodetectors on ZnO substrates [J]. Appl. Phys. Lett., 2011, 98(22):221112-1-3.

[92] Makino T, Segawa Y, Kawasaki M, et al. Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films [J]. Appl. Phys. Lett., 2001, 78(9):1237-1239.

[93] zgür, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys., 2005, 98(4):041301-1-5.

[94] Bosman M, Tang L J, Ye J D, et al. Nanoscale band gap spectroscopy on ZnO and GaN-based compounds with a monochromated electron microscope [J]. Appl. Phys. Lett., 2009, 95(10):101110-1-3.

[95] Nishimoto Y, Nakahara K, Takamizu D, et al. Plasma-assisted molecular beam epitaxy of high optical quality mgzno films on Zn-polar ZnO substrates [J]. Appl. Phys. Exp., 2008, 1(9):091202-1-3.

[96] Thiandoume C, Lusson A, Galtier P, et al. Temperature dependence of Zn1-xMgxO films grown on c-plane sapphire by metal organic vapor phase [J]. J. Cryst. Growth, 2010, 312(9):1529-1533.

[97] Ye J D, Teoh K W, Sun X W, et al. Effects of alloying and localized electronic states on the resonant Raman spectra of Zn1-xMgxO nanocrystals [J]. Appl. Phys. Lett., 2007, 91(9):091901-1-3.

[98] Chen J, Shen W Z. Long-wavelength optical phonon properties of ternary MgZnO thin films [J].Appl. Phys. Lett., 2003, 83(11):2154-2156.

[99] Chang I F, Mitra S S. Application of a modified random-element-isodisplacement model to long-wavelength optic phonons of mixed crystals [J]. Phys. Rev., 1968, 172(3):924-933.

[100] Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nat. Mater., 2005, 4:42-46.

[101] Jiao S J, Zhang Z Z, Lu Y M, et al. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates [J]. Appl. Phys. Lett., 2006, 88(3):031911-1-3.

[102] Lim J H, Kang C K, Kim K K, et al. UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering [J]. Adv. Mater., 2006, 18:2720-2724.

[103] Xu W Z, Ye Z Z, Zeng Y J, et al. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition [J]. Appl. Phys. Lett., 2006, 88(17):173506-1-3.

[104] Chu S, Lim J H, Mandalapu L J, et al. Sb-doped p-ZnO/Ga-doped n-ZnO homojunction ultraviolet light emitting diodes [J]. Appl. Phys. Lett., 2008, 92(15):152103-1-3.

[105] Kong J Y, Chu S, Olmedo M, et al. Dominant ultraviolet light emissions in packed ZnO columnar homojunction diodes [J]. Appl. Phys. Lett., 2008, 93(13):132113-1-3.

[106] Look D C, Molnar R J. Degenerate layer at GaN/sapphire interface:Influence on Hall-effect measurements [J].Appl. Phys. Lett., 1997, 70(25):3377-3379.

[107] Salama A H, Hammad F F. Electrical properties of Li-doped p-type ZnO ceramics [J]. J. Mater. Sci. Technol., 2009, 25(3):314- 318.

[108] Fan J C, Sreekanth K M, Xie Z, et al. P-type ZnO materials:Theory, growth, properties and devices [J]. Prog. Mater. Sci., 2013, 58(6):874-985.

[109] Park C H, Zhang S B, Wei S H. Origin of p-type doping difficulty in ZnO∶The impurity perspective [J]. Phys. Rev. B, 2002, 66(7):073202-1-3.

[110] Yamamoto T, Katayama-Yoshida H. Solution using a codoping method to unipolarity for the fabrication of p-type ZnO [J].Jpn. J. Appl. Phys., 1999, 38(2B):L166-L169.

[111] Chen M M, Xiang R, Su L X, et al. Stabilization of p-type dopant nitrogen in BeZnO ternary alloy epitaxial thin films [J]. J. Phys. D:Appl. Phys., 2012, 45(45):455101-1-6.

[112] Zhuge F, Zhu L P, Ye Z Z, et al. ZnO p-n homojunctions and ohmic contacts to Al-N-co-doped p-type ZnO [J]. Appl. Phys. Lett., 2005, 87(9):092103-1-3.

[113] Kumar M, Kim T H, Kim S S, et al. Growth of epitaxial p-type ZnO thin films by codoping of Ga and N [J]. Appl. Phys. Lett., 2006, 89(11):112103-1-3.

[114] Chen L L, Lu J G, Ye Z Z, et al. P-type behavior in In-N codoped ZnO thin films [J]. Appl. Phys. Lett., 2005, 87(25):252106-1-3.

[115] Gai Y Q, Yao B, Wei Z P, et al. Effect on nitrogen acceptor as Mg is alloyed into ZnO [J]. Appl. Phys. Lett., 2008, 92(6):062110-1-3.

[116] Su S C, Lu Y M, Zhang Z Z, et al. Valence band offset of ZnO/Zn0.85Mg0.15O heterojunction measured by X-ray photoelectron spectroscopy [J]. Appl. Phys. Lett., 2008, 93(8):082108-1-3.

[117] Li J, Wei S H, Li S S, et al. Design of shallow acceptors in ZnO: First-principles band-structure calculations [J]. Phys. Rev. B, 2006, 74(8):081201-1-4.

[118] Chen M, Zhu Y, Su L, et al. Suppression of oxygen vacancies in Be alloyed ZnO [J]. J. Alloy Compd., 2013, 577:179-182.

[119] Kaschner A, Haboeck U, Strassburg M, et al. Nitrogen-related local vibrational modes in ZnO∶N [J]. Appl. Phys. Lett., 2002, 80(11):1909-1911.

[120] Bundesmann C, Ashkenov N, Schubert M, et al. Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li [J]. Appl. Phys. Lett., 2003, 83(10):1974-1976.

[121] Park C, Zhang S, Wei S H. Origin of p-type doping difficulty in ZnO: The impurity perspective [J].Phys. Rev. B, 2002, 66(7):073202-1-4.

[122] Bian J, Li X, Zhang C, et al. P-type ZnO films by monodoping of nitrogen and ZnO-based p-n homojunctions [J]. Appl. Phys. Lett., 2004, 85(18):4070-4072.

[123] Leonard D, Krishnamurthy M, Reaves C M, et al. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces [J]. Appl. Phys. Lett., 1993, 63(23):3203-3205.

[124] Jenny J, Van Nostrand J, Kaspi R. The effect of Al on Ga desorption during gas source-molecular beam epitaxial growth of AlGaN [J]. Appl. Phys. Lett., 1998, 72(1):85-87.

[125] Park S, Chang J, Minegishi T, et al. Investigation on the ZnO∶ N films grown on (0001) and (0001) ZnO templates by plasma-assisted molecular beam epitaxy [J].J. Cryst. Growth, 2009, 311(7):2167-2171.

[126] Iwata K, Fons P, Yamada A, et al. Nitrogen-induced defects in ZnO∶N grown on sapphire substrate by gas source MBE [J]. J. Cryst. Growth, 2000, 209(2):526-531.

[127] Lee E C, Kim Y S, Jin Y G, et al. Compensation mechanism for N acceptors in ZnO [J]. Phys. Rev. B, 2001, 64(8):085120-1-4.

[128] Chen M, Zhu Y, Su L, et al. Formation behavior of BexZn1-xO alloys grown by plasma-assisted molecular beam epitaxy [J]. Appl. Phys. Lett., 2013, 102(20):202103-1-5.

[129] Tang K, Gu S L, Wu K P, et al. Tellurium assisted realization of p-type N-doped ZnO [J]. Appl. Phys. Lett., 2010, 96(24):242101-1-3.

[130] Zhang L X, Yan Y F, Wei S H. Enhancing dopant solubilityvia epitaxial surfactant growth [J]. Phys. Rev. B, 2009, 80(7):073305-1-4.

[131] Tang K, Gu S L, Ye J D, et al. Temperature-dependent photoluminescence of ZnO films codoped with tellurium and nitrogen [J]. J. Appl. Phys., 2012, 112(10):103534-1-9.

[132] Tang K, Gu S L, Ye J D, et al. Mutually beneficial doping of tellurium and nitrogen in ZnO films grown by metal-organic chemical vapor deposition [J]. J. Vac. Sci. Technol. A, 2012, 30(5):051508-1-6.

[133] Jiao S J, Zhang Z Z, Lu Y M, et al. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates [J]. Appl. Phys. Lett., 2006, 88(3):031911-1-3.

[134] Wei Z P, Lu Y M, Shen D Z, et al. Room temperature p-n ZnO blue-violet light-emitting diodes [J]. Appl. Phys. Lett., 2007, 90(4):042113-1-3.

[135] Sun F, Shan C X, Li B H, et al. A reproducible route to p-ZnO films and their application in light-emitting devices [J]. Opt. Lett., 2011, 36(4):499-501.

[136] Liu J S, Shan C X, Shen H, et al. ZnO light-emitting devices with a lifetime of 6.8 hours [J]. Appl. Phys. Lett., 2012, 101(1):011106-1-3.

[137] Liu J S, Shan C X, Li B H, et al. MgZnO p-n heterostructure light-emitting devices [J]. Opt. Lett., 2013, 38(12):2113-2115.

[138] Hwang D K, Oh M S, Lim J H, et al. ZnO thin films and light-emitting diodes [J]. J. Phys. D:Appl. Phys., 2007, 40:R387-R412.

[139] Cheng C W, Liu B, Sie E J, et al. ZnCdO/ZnO coaxial multiple quantum well nanowire heterostructures and optical properties [J]. J. Phys. Chem. C, 2010, 114:3863-3868.

[140] Zhou H J, Wissinger M, Fallert J, et al. Ordered, uniform-sized ZnO nanolaser arrays [J]. Appl. Phys. Lett., 2007, 91(18):181112-1-3.

[141] Choi Y S, Kang J W, Hwang D K, et al. Recent advances in ZnO-based light-emitting diodes [J]. J. Electron. Dev., 2010, 57(1):26-41.

[142] Drapar I T. Alloyed ZnO-Cu2O heterojunction [J]. Soviet Phys. J., 1967, 12(7):933-934.

[143] Chen P, Ma X, Yang D. Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices [J].Appl. Phys. Lett., 2006, 89(11):111112-1-3.

[144] Chen P, Ma X, Li D, et al. 347 nm ultraviolet electroluminescence from MgxZn1-xO-based light emitting devices [J]. Appl. Phys. Lett., 2007, 90(25):251115-1-3.

[145] Ye J D, Gu S L, Zhu S M, et al. Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions [J]. Appl. Phys. Lett., 2006, 88(18):182112-1-3.

[146] Tan S T, Sun X W, Zhao J L, et al. Ultraviolet and visible electroluminescence from n-ZnO/SiOx/(n, p)-Si heterostructured light-emitting diodes [J]. Appl. Phys. Lett., 2008, 93(1):013506-1-3.

[147] Sun H, Zhang Q F, Wu J L. Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure [J].Nanotechnol., 2006, 17(9):2271-2278.

[148] Lee S W, Cho H D, Panin G, et al. Vertical ZnO nanorod/Si contact light-emitting diode [J]. Appl. Phys. Lett., 2011, 98(9):093110-1-3.

[149] Choi J H, Das S N, Moon K J, et al. Fabrication and characterization of p-Si nanowires/ZnO film heterojunction diode [J]. Solid State Electron., 2010, 54:1582-1586.

[150] Hsieh Y P, Chen H Y, Lin M Z, et al. Electroluminescence from ZnO/Si-nanotips light-emitting diodes [J]. Nano Lett., 2009, 9(5):1839-1843.

[151] Alivov Y I, Van Nostran J E, Look D C, et al. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes [J]. Appl. Phys. Lett., 2003, 83(14):2943-1-3.

[152] Park W I, Yi G C. Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN [J]. Adv. Mater., 2004, 16(1):87-90.

[153] Jeong M C, Oh B Y, Ham M H, et al. Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes [J]. Appl. Phys. Lett., 2006, 88(20):202105-1-3.

[154] Xu S, Xu C, Liu Y, et al. Ordered nanowire array blue/near-UV light emitting diodes [J]. Adv. Mater., 2010, 22:4749-4753.

[155] Shi Z F, Zhang Y T, Zhang J X, et al. High-performance ultraviolet-blue light-emitting diodes based on an n-ZnO nanowall networks/p-GaN heterojunction [J]. Appl. Phys. Lett., 2013, 103(2):021109-1-3.

[156] Zhu G Y, Xu C X, Lin Y, et al. Ultraviolet electroluminescence from horizontal ZnO microrods/GaN heterojunction light-emitting diode array [J].Appl. Phys. Lett., 2012, 101(4):041110-1-3.

[157] Dai J, Ji Y, Xu C X, et al. White light emission from CdTe quantum dots decorated n-ZnO nanorods/p-GaN light-emitting diodes [J]. Appl. Phys. Lett., 2011, 99(6):063112-1-3.

[158] Liang H K, Yu S F, Yang H Y. ZnO random laser diode arrays for stable single-mode operation at high power [J].Appl. Phys. Lett., 2010, 97(24):241107-1-3.

[159] Liang H K, Yu S F. An index-guided ZnO random laser array [J].IEEE Photon. Technol. Lett., 2011, 23(8):522-524.

[160] Liang H K, Yu S F, Yang H Y. Directional and controllable edge-emitting ZnO ultraviolet random laser diodes [J].Appl. Phys. Lett., 2010, 96(10):101116-1-3.

[161] Du G T, Zhao W, Wu G G, et al. Electrically pumped lasing from p-ZnO/n-GaN heterojunction diodes [J]. Appl. Phys. Lett., 2012, 101(5):053503-1-3.

[162] Shi Z F, Zhang Y T, Xi X C, et al. Electrically driven ultraviolet random lasing from an n-MgZnO/i-ZnO/SiO2/p-Si asymmetric double heterojunction [J].Nanoscale, 2013, 5(11):5080-5084.

[163] Zhu H, Shan C X, Yao B, et al. Ultralow-threshold laser realized in zinc oxide [J]. Adv. Mater., 2009, 21(16):1613-1617.

[164] Qiao Q, Shan C X, Zheng J, et al. Surface plasmon enhanced electrically pumped random lasers [J]. Nanoscale, 2013, 5(2):513-517.

[165] Sun X W, Ling B, Zhao J L, et al. Ultraviolet emission from a ZnO rod homojunction light-emitting diode [J]. Appl. Phys. Lett., 2009, 95(13):133124-1-3.

[166] Yang Y, Sun X W, Tay B K, et al., A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation [J]. Appl. Phys. Lett., 2008, 93(25):253107-1-3.

[167] Chu S, Wang G P, Zhou W H, et al. Electrically pumped waveguide lasing from ZnO nanowires [J]. Nat. Nanotechnol., 2011, 6(8):506-510.

[168] Zhang Q, Qi J J, Li X, et al. Electrically pumped lasing from single ZnO micro/nanowire and poly (3, 4-ethylenedioxythiophene)∶poly (styrenexulfonate) hybrid heterostructures [J]. Appl. Phys. Lett., 2012, 101(4):043119-1-3.

[169] Dai J, Xu C X, Sun X W. ZnO-microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes [J].Adv. Mater., 2011, 23(35):4115-4119.

申德振, 梅增霞, 梁会力, 杜小龙, 叶建东, 顾书林, 吴玉喜, 徐春祥, 朱刚毅, 戴俊, 陈明明, 季旭, 汤子康, 单崇新, 张宝林, 杜国同, 张振中. 氧化锌基材料、异质结构及光电器件[J]. 发光学报, 2014, 35(1): 1. SHEN De-zhen, MEI Zeng-xia, LIANG Hui-li, DU Xiao-long, YE Jian-dong, GU Shu-lin, WU Yu-xi, XU Chun-xiang, ZHU Gang-yi, DAI Jun, CHEN Ming-ming, JI Xu, TANG Zi-kang, SHAN Chong-xin, ZHANG Bao-lin, DU Guo-tong, ZHANG Zhen-zhong. ZnO-based Matierial, Heterojunction and Photoelctronic Device[J]. Chinese Journal of Luminescence, 2014, 35(1): 1.

本文已被 24 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!