发光学报, 2014, 35 (1): 1, 网络出版: 2014-01-17   

氧化锌基材料、异质结构及光电器件

ZnO-based Matierial, Heterojunction and Photoelctronic Device
作者单位
1 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春130033
2 中国科学院清洁能源前沿研究重点实验室 北京新能源材料与器件重点实验室 中国科学院物理研究所 北京凝聚态物理国家实验室, 北京100190
3 南京大学 电子科学与工程学院和南京微结构国家实验室(筹), 江苏 南京210046
4 中国矿业大学 物理学院, 江苏 徐州221116
5 东南大学 生物科学与医学工程学院 生物电子学国家重点实验室, 江苏 南京210096
6 中山大学 光电材料与技术国家重点实验室, 广东 广州510275
7 香港科技大学 物理系, 香港999077
8 吉林大学电子科学与工程学院 集成光子学国家重点实验室, 吉林 长春130012
9 大连理工大学 物理与光电工程学院, 辽宁 大连116023
摘要
Ⅱ-Ⅵ族直接带隙化合物半导体氧化锌(ZnO)的禁带宽度为3.37 eV, 室温下激子束缚能高达60 meV, 远高于室温热离化能(26 meV), 是制造高效率短波长探测、发光和激光器件的理想材料。历经10年的发展, ZnO基半导体的研究在薄膜生长、杂质调控和器件应用等方面的研究获得了巨大的进展。本文主要介绍了以国家“973”项目(2011CB302000)研究团队为主体, 在上述方面所取得的研究进展, 同时概述国际相关研究, 主要包括衬底级ZnO单晶的生长, ZnO薄膜的同质、异质外延, 表面/界面工程, 异质结电子输运性质、合金能带工程, p型掺杂薄膜的杂质调控, 以及基于上述结果的探测、发光和激光器件等的研究进展。迄今为止, 该团队已经实现了薄膜同质外延的二维生长、硅衬底上高质量异质外延、基于MgZnO合金薄膜的日盲紫外探测器、可重复的p型掺杂、可连续工作数十小时的同质结紫外发光管以及模式可控的异质结微纳紫外激光器件等重大成果。本文针对这些研究内容中存在的问题和困难加以剖析并探索新的研究途径, 期望能对ZnO材料在未来的实际应用起到一定的促进作用。
Abstract
Zinc oxide (ZnO), as a typical wide bandgap (3.37 eV) semiconductor, has abstracted increasing interests in optoelectronics field. Its large exciton binding energy of 60 meV endows it with high radiative recombination efficiency, which is a unique advantage in light emitting and lasing devices. After more than a decade of developments, the thin film growth, doping and the device study have achieved much improvement. In this review, we introduce a part of results on the above aspects in the last five years. In these improvements, the ones achieved by the “973” project group (2011CB302000) are shown in detail. So far, their jobs cover hertero- and homo-epitaxy of thin film, interface and surface engineering, carrier transport, energy engineering, p-type doping and optoelectronics devices. They have realized the 2-D growth of thin film, epitaxial growth on silicon, solar blind UV detector, LED with dozens-hour continual-operating time, and lasing device with controllable mode. These advancements are expected to accelerate the process of practical applications of ZnO.
参考文献

[1] Zu P, Tang Z K, Wong G K L, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature [J]. Solid State Commun., 1997, 103(8):459-463.

[2] Service R F. Will UV lasers beat the blues [J].Science, 1997, 276(5314):895.

[3] Bertazzi F, Penna M, Goano M, et al. Theory of high field carrier transport and impact ionization in ZnO [J]. SPIE, 2010, 7603:760303-1-10.

[4] Ye J D, Tan S T, Pannirselvam S, et al. Surfactant effect of arsenic doping on modification of ZnO (0001) growth kinetics [J]. Appl. Phys. Lett., 2009, 95(10):101905-1-3.

[5] Pierce J M, Adekore B T, Davis R F, et al. Growth of dense ZnO films via MOVPE on GaN(0001) epilayers using a low/high-temperature [J]. J. Cryst.Growth, 2005, 277(1-4):345-351.

[6] Nishinaka H, Fujita S. Step-flow growth of homoepitaxial ZnO thin films by ultrasonic spray-assisted MOVPE [J].J. Cryst. Growth, 2008, 310(23):5007-5010.

[7] Thiandoume C, Lusson A, Galtier P, et al. Temperature dependence of Zn1-xMgxO films grown on c-plane sapphire by metal organic vapor phase epitaxy [J]. J. Cryst. Growth, 2010, 312(9):1529-1533.

[8] Yuan H T, Zeng Z Q, Mei Z X, et al. Surfactant effects of lithium dopant during molecular beam epitaxy of ZnO films [J]. J. Phys.: Condens. Matter, 2007, 19(48):482001-1-7.

[9] Zhang L, Tang H F, Kuech T F. Effect of Sb as a surfactant during the lateral epitaxial overgrowth of GaN by metal organic vapor phase epitaxy [J].Appl. Phys. Lett., 2001, 79(19):3059-3061.

[10] Zhang L, Tang H F, Schieke J, et al. The addition of Sb as a surfactant to GaN growth by metal organic vapor phase epitaxy [J].J. Appl. Phys., 2002, 92(5):2304-2309.

[11] Heying B, Wu X H, Keller S, et al. Role of threading dislocation structure on the X-ray diffraction peak widths in epitaxial GaN films [J]. Appl. Phys. Lett., 1996, 68(5):643-645.

[12] Northrup J E, Neugebauer J. Theory of GaN(1010) and (1120) surfaces [J]. Phys. Rev. B, 1996, 53(16):R10477-1-9.

[13] Lymperakis L, Neugebauer J. Large anisotropic adatom kinetics on nonpolar GaN surfaces:Consequences for surface morphologies and nanowire growth [J].Phys. Rev. B, 2009, 79(24):241308-1-4.

[14] Cho M W, Setiawan A, Ko K J, et al. ZnO epitaxial layers grown on c-sapphire substrate with MgO buffer by plasma-assisted molecular beam epitaxy (P-MBE) [J]. Semicond. Sci. Technol., 2005, 20(4):S13-S21.

[15] Ohmoto A, Tsukazaki A. Pulsed laser deposition of thin films and superlattices based on ZnO [J].Semicond. Sci. Technol., 2005, 20(4):S1-S12.

[16] Zhu J J, Lin B X, Yao R, et al. Hitero-epitaxy ZnO/SiC/Si(111) by LP-MOCVD [J]. Chin. J. Semicond.(半导体学报), 2004, 25(12):1662-1665 (in Chinese).

[17] Yoo Y Z, Sekiguchi T, Chikyow T, et al. V defects of ZnO thin films grown on Si as an ultraviolet optical path [J]. Appl. Phys. Lett., 2004, 84(4):502-504.

[18] Kawamoto N, Fujita M, Tatsumi T, et al. Growth of ZnO on Si substrate by plasma-assisted molecular beam epitaxy [J]. Jpn. J. Appl. Phys., 2003, 42:7209-7212.

[19] Yang W, Hullavarad S S, Nagaraj B, et al. Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors [J]. Appl. Phys. Lett., 2003, 82(20):3424-3426.

[20] Jin C M, Wei W, Zhou H H, et al. Epitaxial growth and Ohmic contacts in MgxZn1-xO/TiN/Si(111) heterostructures [J]. Appl. Phys. Lett., 2008, 93(25):251102-1-3.

[21] Koike K, Ham K, Nakashima I, et al. Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)-oriented Si substrate toward UV-detector applications [J]. J. Cryst. Growth, 2005, 278(1-4):288-292.

[22] Wan X N, Wang Y, Mei Z X, et al. Low-temperature engineering for high-quality epitaxy of ZnO film on Si(111) substrate [J]. Appl. Phys. Lett., 2007, 90(15):151912-1-3.

[23] Yoo Y Z, Sekiguchi T, Chikyow T, et al. V defects of ZnO thin films grown on Si as an ultraviolet optical path [J]. Appl. Phys. Lett., 2004, 84(4):502-504.

[24] Lin C C, Chen S Y, Cheng S Y, et al. Properties of nitrogen-implanted p-type ZnO films grown on Si3N4/Si by radio-frequency magnetron sputtering [J]. Appl. Phys. Lett., 2004, 84(24):5040-5042.

[25] Lin B X, Fu Z X, Jia Y B. Green luminescent center in undoped zinc oxide films deposited on silicon substrates [J].Appl. Phys. Lett., 2001, 79(7):943-945

[26] Meyer B K, Alve H S, Hofmann D M, et al. Bound exciton and donor-acceptor pair recombinations in ZnO [J]. Phys. Stat. Sol. (b), 2004, 241(2):231-260.

[27] Teke A, zgür , Do an S, et al. Excitonic fine structure and recombination dynamics in single-crystalline ZnO [J]. Phys. Rev. B, 2004, 70(19):195207-1-10.

[28] Ko H J, Chen Y F, Zhu Z, et al. Photoluminescence properties of ZnO epilayers grown on CaF2(111) by plasma assisted molecular beam epitaxy [J]. Appl. Phys. Lett., 2000, 76(14):1905-1907

[29] Hwang H Y, Iwasa Y, Kawasaki M, et al. Emergent phenomena at oxide interfaces [J]. Nat. Mater., 2012, 11:103-113.

[30] Sasa S, Ozaki M, Koike K, et al. High-performance ZnO/ZnMgO field-effect transistors using a hetero-metal-insulator-semiconductor structure [J]. Appl. Phys. Lett., 2006, 89(5):053502-1-3.

[31] Bernardini F, Fiorentini V, Vanderbilt D. Spontaneous polarization and piezoelectric constants ofⅢ-Ⅴ nitrides [J]. Phys. Rev. B, 1997, 56:R10024-R10027.

[32] Roessler D M, Walker W C, Loh E. Electronic spectrum of crystalline beryllium oxide [J].J. Phys. Chem. Solids, 1969, 30(1):157-167.

[33] Tsukazaki A, Akasaka A S, Nakahara K, et al. Observation of the fractional quantum Hall effect in an oxide [J]. Nat. Mater., 2010, 9:889-893.

[34] Ye J D, Pannirselvam S, Lim S T, et al. Two-dimensional electron gas in Zn-polar ZnMgO/ZnO heterostructure grown by metal-organic vapor phase epitaxy [J]. Appl. Phys. Lett., 2010, 97(11):111908-1-3.

[35] Tampo H, Shibata H, Maejima K, et al. Polarization-induced two-dimensional electron gases in ZnMgO/ZnO heterostructures [J]. Appl. Phys. Lett., 2008, 93(20):202104-1-3.

[36] Smorchkova I P, Elsass C R, Ibbetson J P, et al. Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy [J]. J. Appl. Phys., 1999, 86(8):4520-4526.

[37] Reinle-Schmitt M L, Cancellieri C, Li D, et al. Tunable conductivity threshold at polar oxide interfaces [J]. Nat. Commun., 2012, 3:932-1-5.

[38] Xie Y W, Hikita Y, Bell C, et al. Control of electronic conduction at an oxide heterointerface using surface polar adsorbates [J]. Nat. Commun., 2011, 2:494-1-18.

[39] Ye J D, Lim S T, Bosman M, et al. Spin-polarized wide electron slabs in functionally graded polar oxide heterostructures [J]. Sci. Rep., 2012, 2:533-1-8.

[40] Falson J, Maryenko D, Kozuka Y, et al. Magnesium doping controlled density and mobility of two-dimensional electron gas in MgxZn1-xO/ZnO heterostructures [J]. Appl. Phys. Exp., 2011, 4(9):091101-1-3.

[41] Tang K, Gu S L, Li S Z, et al. Influence of thermally diffused aluminum atoms from sapphire substrate on the properties of ZnO epilayers grown by metal-organic chemical vapor deposition [J]. J. Vac. Sci. Technol. A, 2011, 29(3):03A106-03A107.

[42] Tang K, Gu S L, Ye J D, et al. Temperature-dependent exciton-related transition energies mediated by carrier concentrations in unintentionally Al-doped ZnO films [J]. Appl. Phys. Lett., 2013, 102(22):221905-1-3.

[43] Zhang Y C, Fu W Y, Humphreys C, et al. Structural characterisation of improved GaN epilayers grown on a Ge(111) substrate [J]. Appl. Phys. Exp., 2011, 4(9):091101-1-3.

[44] Ye J D, Lim S T, Gu S L, et al. Origin and transport properties of two-dimensional electron gas at ZnMgO/ZnO interface grown by MOVPE [J]. Phys. Stat. Sol. (c), 2013, 10(10):1268 -1671.

[45] Han K, Tang N, Ye J D, et al. Spin-polarized two-dimensional electron gas in undoped MgxZn1-xO/ZnO heterostructures [J]. Appl. Phys. Lett., 2012, 100(19):192105-1-3.

[46] Chen H, Gu S L, Liu J G, et al. Two-dimensional electron gas related emissions in ZnMgO/ZnO heterostructures [J]. Appl. Phys. Lett., 2011, 99(21):211906-1-3.

[47] Makino T, Segawa Y, Tsukazaki A, et al. Magneto-photoluminescence of charged excitons from MgxZn1-xO/ZnO heterojunctions [J]. Phys. Rev. B, 2013, 87(8):085312-1-7.

[48] Elhamri S, Saxler A, Mitchel W C, et al. Study of deleterious aging effects in GaN/AlGaN heterostructures [J]. J. Appl. Phys., 2003, 93(2):1079-1082.

[49] Biswas M, Jung Y, Kim H, et al. Microscopic origins of the surface exciton photoluminescence peak in ZnO nanostructures [J]. Phy. Rev. B, 2011, 83(23):235320-1-10.

[50] Travnikov V V, Freiberg A, Savikhin S F. Surface excitons in ZnO crystals [J]. J. Lumin., 1990, 47(3):107-111.

[51] Ye Z Z, Zhang Y Z, Chen H H, et al. Fabrication and properties of ZnO photoconductive UV detector [J]. Acta Electronic Sinica (电子学报), 2003, 31(11):1605-1607 (in Chinese).

[52] Gao H, Deng H, Li Y. ZnO Shoterky barrier UV photodetector [J].Chin. J. Lumin. (发光学报), 2005, 26(1):135-139.

[53] Xu Q A, Zhang J W, Ju K R, et al. ZnO thin film photoconductive ultraviolet detector with fast photoresponse [J]. J. Cryst. Growth, 2006, 289(1):44-47.

[54] Bi Z, Zhang J, Bian X, et al. A high-performance ultraviolet photoconductive detector based on a ZnO film grown by RF sputtering [J]. J. Electron. Mater., 2008, 37(5):760-763.

[55] Liu J S, Shan C X, Li B H, et al. High responsivity ultraviolet photodetector realized via a carrier-trapping process [J]. Appl. Phys. Lett., 2010, 97(25):251102-1-3.

[56] Zhang T C, Guo Y, Mei Z X, et al. Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulator-MgO/p-Si [J]. Appl. Phys. Lett., 2009, 94(11):113508-1-3.

[57] Monroy E, Omnes F, Calle F. Wide-bandgap semiconductor ultraviolet photodetectors [J].Semicond. Sci. Technol., 2003, 18(14):R33-R51.

[58] Shibata H, Tampo H, Matsubara K, A, et al. Photoluminescence characterization of Zn1-xMgxO epitaxial thin films grown on ZnO by radical source molecular beam epitaxy [J]. Appl. Phys. Lett., 2007, 90(12):124104-1-3.

[59] Tampo H, Shibata H, Matsubara K, et al. Two-dimensional electron gas in Zn polar ZnMgO/ZnO heterostructures grown by radical source molecular beam epitaxy [J]. Appl. Phys. Lett., 2006, 89(13):132113-1-3.

[60] Tsukazaki A, Yuji H, Akasaka S, et al. High electron mobility exceeding 104 cm2·V-1·s-1 in MgxZn1-xO/ZnO single heterostructures grown by molecular beam epitaxy [J]. Appl. Phys. Exp., 2008, 1(5):055004-1-3.

[61] Tsukazaki A, Akasaka S, Nakahara K, et al. Observation of the fractional quantum Hall effect in an oxide [J]. Nat. Mater., 2010, 9:889-893.

[62] Sarver J F, Katnack F L, Hummel F A. Phase equilibria and manganese-activated fluorescence in the system Zn3(PO4)2-Mg3(PO4)2 [J]. J. Electrochem. Soc., 1959, 106:960-963.

[63] Ohtomo A, Kawasaki M, Koida T, et al. MgxZn1-xO as a Ⅱ-Ⅵ widegap semiconductor alloy [J]. Appl. Phys. Lett., 1998, 72(19):2466-2468.

[64] Tampo H, Shibata H, Maejima K, et al. Strong excitonic transition of Zn1-xMgxO alloy [J]. Appl. Phys. Lett., 2007, 91(26):261907-1-3.

[65] Takagi T, Tanaka H, Fujita S, et al. Molecular beam epitaxy of high magnesium content single-phase wurzite MgxZn1-xO alloys (x≈0.5) and their application to solar-blind region photodetectors [J]. Jpn. J. Appl. Phys., 2003, 42:L401-L403.

[66] Tanaka H, Fujita S, Fujita S. Fabrication of wide-band-gap MgxZn1-xO quasi-ternary alloys by molecular-beam epitaxy [J]. Appl. Phys. Lett., 2005, 86(19):192911-1-3.

[67] Ohtomo A, Kawasaki M, Ohkubo I, et al. Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices [J]. Appl. Phys. Lett., 1999, 75(7):980-982.

[68] Makino T, Chia C H, Tuan N T, et al. Room-temperature luminescence of excitons in ZnO/(Mg, Zn)O multiple quantum wells on lattice-matched substrates [J]. Appl. Phys. Lett., 2000, 77(7):975-977.

[69] Ohtomo A, Tamura K, Kawasaki M, et al. Room-temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices [J]. Appl. Phys. Lett., 2000, 77(14):2204-2206.

[70] Sun H D, Makino T, Tuan N T, et al. Stimulated emission induced by exciton-exciton scattering in ZnO/ZnMgO multiquantum wells up to room temperature [J]. Appl. Phys. Lett., 2000, 77(26):4250-4252.

[71] Makino T, Tuan N T, Su H D, et al. Temperature dependence of near ultraviolet photoluminescence in ZnO/(Mg, Zn)O multiple quantum wells [J]. Appl. Phys. Lett., 2001, 78(14):1979-1981.

[72] Tsukazaki A, Ohtomo A, Kawasaki M. High-mobility electronic transport in ZnO thin films [J]. Appl. Phys. Lett., 2006, 88(15):152106-1-3.

[73] Tsukazaki A, Ohtomo A, Kita T, et al. Quantum Hall effect in polar oxide heterostructures [J]. Science, 2007, 315:1388-1391.

[74] Tampo H, Shibata H, Maejima K, et al. Polarization-induced two-dimensional electron gases in ZnMgO/ZnO heterostructures [J]. Appl. Phys. Lett., 2008, 93(20):202104-1-3.

[75] Nakano M, Tsukazaki A, Ohtomo A, et al. Electronic-field control of two-dimensional electrons in polymer-gated-oxide semiconductor heterostructures [J]. Adv. Mater., 2010, 22:876-879.

[76] Du X L, Mei Z X, Liu Z L, et al. Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors [J]. Adv. Mater., 2009, 21:4625-4630.

[77] Liu Z L, Mei Z X, Zhang T C, et al. Solar-blind 4.55 eV band gap Mg0.55Zn0.45O components fabricated using quasi-homo buffers [J]. J. Cryst. Growth, 2009, 311(18):4356-4359

[78] Liang H L, Mei Z X, Zhang Q H, et al. Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors [J]. Appl. Phys. Lett., 2011, 98(22):221902-1-3.

[79] Zhang T C, Guo Y, Mei Z X, et al. Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulator-MgO/p-Si [J]. Appl. Phys. Lett., 2009, 94(11):113508-1-3.

[80] Hou Y N, Mei Z X, Liu Z L, et al. Mg0.55Zn0.45O solar-blind ultraviolet detector with high photoresponse performance and large internal gain [J]. Appl. Phys. Lett., 2011, 98(10):103506-1-3.

[81] Hou Y N, Mei Z X, Liang H L, et al. Comparative study of n-MgZnO/p-Si ultraviolet-B photodetector performance with different device structures [J]. Appl. Phys. Lett., 2011, 98(26):263501-1-3.

[82] Hou Y N, Mei Z X, Liang H L, et al. Annealing effects of Ti/Au contact on n-MgZnO/p-Si ultraviolet-B photodetectors [J]. IEEE Trans. Elect. Dev., 2013, (60):3474-3477.

[83] Hou Y N, Mei Z X, Liang H L, et al. Dual-band MgZnO ultraviolet photodetector integrated with Si [J]. Appl. Phys. Lett., 2013, 102(15):153510-1-4.

[84] Godin T J, La Femina J P. Atomic and electronic structure of the corundum (α-alumina) (0001) surface [J]. Phys. Rev. B, 1994, 49:7691-7696.

[85] Soares E A, Van Hove M A, Walters C F, et al. Structure of the α-Al2O3(0001) surface from low-energy electron diffraction:Al termination and evidence for anomalously large thermal vibrations [J]. Phys. Rev. B, 2002, 65(19):195405-1-13.

[86] He X, Gu L, Guo S D, et al. Oxygen polarity and interfacial atomic arrangement in an MgxZn1-xO/C-MgO/sapphire heterostructure [J]. J. Phys. D:Appl. Phys., 2013, 46(14):145303-1-5.

[87] Xie M H, Seutter S M, Zhu W K, et al. Anisotropic step-flow growth and island growth of GaN(0001) by molecular beam epitaxy [J]. Phys. Rev. Lett., 1999, 82:2749-2752.

[88] Sawai Y, Hazu K, Chichibu S F. Surface stoichiometry and activity control for atomically smooth low dislocation density ZnO and pseudomorphic MgZnO epitaxy on a Zn-polar ZnO substrate by the helicon-wave-excited-plasma sputtering epitaxy method [J]. J. Appl. Phys., 2010, 108(6):063541-1-8.

[89] Ju Z G, Shan C X, Jiang D Y, et al. MgxZn1-xO-based photodetectors covering the whole solar-blind spectrum range [J]. Appl. Phys. Lett., 2008, 93(17):173505-1-3.

[90] Wang L K, Ju Z G, Zhang J Y, et al. Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices [J]. Appl. Phys. Lett., 2009, 95(13):131113-1-3.

[91] Zheng Q H, Huang F, Ding K, et al. MgZnO-based metal-semiconductor-metal solar-blind photodetectors on ZnO substrates [J]. Appl. Phys. Lett., 2011, 98(22):221112-1-3.

[92] Makino T, Segawa Y, Kawasaki M, et al. Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films [J]. Appl. Phys. Lett., 2001, 78(9):1237-1239.

[93] zgür, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys., 2005, 98(4):041301-1-5.

[94] Bosman M, Tang L J, Ye J D, et al. Nanoscale band gap spectroscopy on ZnO and GaN-based compounds with a monochromated electron microscope [J]. Appl. Phys. Lett., 2009, 95(10):101110-1-3.

[95] Nishimoto Y, Nakahara K, Takamizu D, et al. Plasma-assisted molecular beam epitaxy of high optical quality mgzno films on Zn-polar ZnO substrates [J]. Appl. Phys. Exp., 2008, 1(9):091202-1-3.

[96] Thiandoume C, Lusson A, Galtier P, et al. Temperature dependence of Zn1-xMgxO films grown on c-plane sapphire by metal organic vapor phase [J]. J. Cryst. Growth, 2010, 312(9):1529-1533.

[97] Ye J D, Teoh K W, Sun X W, et al. Effects of alloying and localized electronic states on the resonant Raman spectra of Zn1-xMgxO nanocrystals [J]. Appl. Phys. Lett., 2007, 91(9):091901-1-3.

[98] Chen J, Shen W Z. Long-wavelength optical phonon properties of ternary MgZnO thin films [J].Appl. Phys. Lett., 2003, 83(11):2154-2156.

[99] Chang I F, Mitra S S. Application of a modified random-element-isodisplacement model to long-wavelength optic phonons of mixed crystals [J]. Phys. Rev., 1968, 172(3):924-933.

[100] Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nat. Mater., 2005, 4:42-46.

[101] Jiao S J, Zhang Z Z, Lu Y M, et al. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates [J]. Appl. Phys. Lett., 2006, 88(3):031911-1-3.

[102] Lim J H, Kang C K, Kim K K, et al. UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering [J]. Adv. Mater., 2006, 18:2720-2724.

[103] Xu W Z, Ye Z Z, Zeng Y J, et al. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition [J]. Appl. Phys. Lett., 2006, 88(17):173506-1-3.

[104] Chu S, Lim J H, Mandalapu L J, et al. Sb-doped p-ZnO/Ga-doped n-ZnO homojunction ultraviolet light emitting diodes [J]. Appl. Phys. Lett., 2008, 92(15):152103-1-3.

[105] Kong J Y, Chu S, Olmedo M, et al. Dominant ultraviolet light emissions in packed ZnO columnar homojunction diodes [J]. Appl. Phys. Lett., 2008, 93(13):132113-1-3.

[106] Look D C, Molnar R J. Degenerate layer at GaN/sapphire interface:Influence on Hall-effect measurements [J].Appl. Phys. Lett., 1997, 70(25):3377-3379.

[107] Salama A H, Hammad F F. Electrical properties of Li-doped p-type ZnO ceramics [J]. J. Mater. Sci. Technol., 2009, 25(3):314- 318.

[108] Fan J C, Sreekanth K M, Xie Z, et al. P-type ZnO materials:Theory, growth, properties and devices [J]. Prog. Mater. Sci., 2013, 58(6):874-985.

[109] Park C H, Zhang S B, Wei S H. Origin of p-type doping difficulty in ZnO∶The impurity perspective [J]. Phys. Rev. B, 2002, 66(7):073202-1-3.

[110] Yamamoto T, Katayama-Yoshida H. Solution using a codoping method to unipolarity for the fabrication of p-type ZnO [J].Jpn. J. Appl. Phys., 1999, 38(2B):L166-L169.

[111] Chen M M, Xiang R, Su L X, et al. Stabilization of p-type dopant nitrogen in BeZnO ternary alloy epitaxial thin films [J]. J. Phys. D:Appl. Phys., 2012, 45(45):455101-1-6.

[112] Zhuge F, Zhu L P, Ye Z Z, et al. ZnO p-n homojunctions and ohmic contacts to Al-N-co-doped p-type ZnO [J]. Appl. Phys. Lett., 2005, 87(9):092103-1-3.

[113] Kumar M, Kim T H, Kim S S, et al. Growth of epitaxial p-type ZnO thin films by codoping of Ga and N [J]. Appl. Phys. Lett., 2006, 89(11):112103-1-3.

[114] Chen L L, Lu J G, Ye Z Z, et al. P-type behavior in In-N codoped ZnO thin films [J]. Appl. Phys. Lett., 2005, 87(25):252106-1-3.

[115] Gai Y Q, Yao B, Wei Z P, et al. Effect on nitrogen acceptor as Mg is alloyed into ZnO [J]. Appl. Phys. Lett., 2008, 92(6):062110-1-3.

[116] Su S C, Lu Y M, Zhang Z Z, et al. Valence band offset of ZnO/Zn0.85Mg0.15O heterojunction measured by X-ray photoelectron spectroscopy [J]. Appl. Phys. Lett., 2008, 93(8):082108-1-3.

[117] Li J, Wei S H, Li S S, et al. Design of shallow acceptors in ZnO: First-principles band-structure calculations [J]. Phys. Rev. B, 2006, 74(8):081201-1-4.

[118] Chen M, Zhu Y, Su L, et al. Suppression of oxygen vacancies in Be alloyed ZnO [J]. J. Alloy Compd., 2013, 577:179-182.

[119] Kaschner A, Haboeck U, Strassburg M, et al. Nitrogen-related local vibrational modes in ZnO∶N [J]. Appl. Phys. Lett., 2002, 80(11):1909-1911.

[120] Bundesmann C, Ashkenov N, Schubert M, et al. Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li [J]. Appl. Phys. Lett., 2003, 83(10):1974-1976.

[121] Park C, Zhang S, Wei S H. Origin of p-type doping difficulty in ZnO: The impurity perspective [J].Phys. Rev. B, 2002, 66(7):073202-1-4.

[122] Bian J, Li X, Zhang C, et al. P-type ZnO films by monodoping of nitrogen and ZnO-based p-n homojunctions [J]. Appl. Phys. Lett., 2004, 85(18):4070-4072.

[123] Leonard D, Krishnamurthy M, Reaves C M, et al. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces [J]. Appl. Phys. Lett., 1993, 63(23):3203-3205.

[124] Jenny J, Van Nostrand J, Kaspi R. The effect of Al on Ga desorption during gas source-molecular beam epitaxial growth of AlGaN [J]. Appl. Phys. Lett., 1998, 72(1):85-87.

[125] Park S, Chang J, Minegishi T, et al. Investigation on the ZnO∶ N films grown on (0001) and (0001) ZnO templates by plasma-assisted molecular beam epitaxy [J].J. Cryst. Growth, 2009, 311(7):2167-2171.

[126] Iwata K, Fons P, Yamada A, et al. Nitrogen-induced defects in ZnO∶N grown on sapphire substrate by gas source MBE [J]. J. Cryst. Growth, 2000, 209(2):526-531.

[127] Lee E C, Kim Y S, Jin Y G, et al. Compensation mechanism for N acceptors in ZnO [J]. Phys. Rev. B, 2001, 64(8):085120-1-4.

[128] Chen M, Zhu Y, Su L, et al. Formation behavior of BexZn1-xO alloys grown by plasma-assisted molecular beam epitaxy [J]. Appl. Phys. Lett., 2013, 102(20):202103-1-5.

[129] Tang K, Gu S L, Wu K P, et al. Tellurium assisted realization of p-type N-doped ZnO [J]. Appl. Phys. Lett., 2010, 96(24):242101-1-3.

[130] Zhang L X, Yan Y F, Wei S H. Enhancing dopant solubilityvia epitaxial surfactant growth [J]. Phys. Rev. B, 2009, 80(7):073305-1-4.

[131] Tang K, Gu S L, Ye J D, et al. Temperature-dependent photoluminescence of ZnO films codoped with tellurium and nitrogen [J]. J. Appl. Phys., 2012, 112(10):103534-1-9.

[132] Tang K, Gu S L, Ye J D, et al. Mutually beneficial doping of tellurium and nitrogen in ZnO films grown by metal-organic chemical vapor deposition [J]. J. Vac. Sci. Technol. A, 2012, 30(5):051508-1-6.

[133] Jiao S J, Zhang Z Z, Lu Y M, et al. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates [J]. Appl. Phys. Lett., 2006, 88(3):031911-1-3.

[134] Wei Z P, Lu Y M, Shen D Z, et al. Room temperature p-n ZnO blue-violet light-emitting diodes [J]. Appl. Phys. Lett., 2007, 90(4):042113-1-3.

[135] Sun F, Shan C X, Li B H, et al. A reproducible route to p-ZnO films and their application in light-emitting devices [J]. Opt. Lett., 2011, 36(4):499-501.

[136] Liu J S, Shan C X, Shen H, et al. ZnO light-emitting devices with a lifetime of 6.8 hours [J]. Appl. Phys. Lett., 2012, 101(1):011106-1-3.

[137] Liu J S, Shan C X, Li B H, et al. MgZnO p-n heterostructure light-emitting devices [J]. Opt. Lett., 2013, 38(12):2113-2115.

[138] Hwang D K, Oh M S, Lim J H, et al. ZnO thin films and light-emitting diodes [J]. J. Phys. D:Appl. Phys., 2007, 40:R387-R412.

[139] Cheng C W, Liu B, Sie E J, et al. ZnCdO/ZnO coaxial multiple quantum well nanowire heterostructures and optical properties [J]. J. Phys. Chem. C, 2010, 114:3863-3868.

[140] Zhou H J, Wissinger M, Fallert J, et al. Ordered, uniform-sized ZnO nanolaser arrays [J]. Appl. Phys. Lett., 2007, 91(18):181112-1-3.

[141] Choi Y S, Kang J W, Hwang D K, et al. Recent advances in ZnO-based light-emitting diodes [J]. J. Electron. Dev., 2010, 57(1):26-41.

[142] Drapar I T. Alloyed ZnO-Cu2O heterojunction [J]. Soviet Phys. J., 1967, 12(7):933-934.

[143] Chen P, Ma X, Yang D. Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices [J].Appl. Phys. Lett., 2006, 89(11):111112-1-3.

[144] Chen P, Ma X, Li D, et al. 347 nm ultraviolet electroluminescence from MgxZn1-xO-based light emitting devices [J]. Appl. Phys. Lett., 2007, 90(25):251115-1-3.

[145] Ye J D, Gu S L, Zhu S M, et al. Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions [J]. Appl. Phys. Lett., 2006, 88(18):182112-1-3.

[146] Tan S T, Sun X W, Zhao J L, et al. Ultraviolet and visible electroluminescence from n-ZnO/SiOx/(n, p)-Si heterostructured light-emitting diodes [J]. Appl. Phys. Lett., 2008, 93(1):013506-1-3.

[147] Sun H, Zhang Q F, Wu J L. Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure [J].Nanotechnol., 2006, 17(9):2271-2278.

[148] Lee S W, Cho H D, Panin G, et al. Vertical ZnO nanorod/Si contact light-emitting diode [J]. Appl. Phys. Lett., 2011, 98(9):093110-1-3.

[149] Choi J H, Das S N, Moon K J, et al. Fabrication and characterization of p-Si nanowires/ZnO film heterojunction diode [J]. Solid State Electron., 2010, 54:1582-1586.

[150] Hsieh Y P, Chen H Y, Lin M Z, et al. Electroluminescence from ZnO/Si-nanotips light-emitting diodes [J]. Nano Lett., 2009, 9(5):1839-1843.

[151] Alivov Y I, Van Nostran J E, Look D C, et al. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes [J]. Appl. Phys. Lett., 2003, 83(14):2943-1-3.

[152] Park W I, Yi G C. Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN [J]. Adv. Mater., 2004, 16(1):87-90.

[153] Jeong M C, Oh B Y, Ham M H, et al. Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes [J]. Appl. Phys. Lett., 2006, 88(20):202105-1-3.

[154] Xu S, Xu C, Liu Y, et al. Ordered nanowire array blue/near-UV light emitting diodes [J]. Adv. Mater., 2010, 22:4749-4753.

[155] Shi Z F, Zhang Y T, Zhang J X, et al. High-performance ultraviolet-blue light-emitting diodes based on an n-ZnO nanowall networks/p-GaN heterojunction [J]. Appl. Phys. Lett., 2013, 103(2):021109-1-3.

[156] Zhu G Y, Xu C X, Lin Y, et al. Ultraviolet electroluminescence from horizontal ZnO microrods/GaN heterojunction light-emitting diode array [J].Appl. Phys. Lett., 2012, 101(4):041110-1-3.

[157] Dai J, Ji Y, Xu C X, et al. White light emission from CdTe quantum dots decorated n-ZnO nanorods/p-GaN light-emitting diodes [J]. Appl. Phys. Lett., 2011, 99(6):063112-1-3.

[158] Liang H K, Yu S F, Yang H Y. ZnO random laser diode arrays for stable single-mode operation at high power [J].Appl. Phys. Lett., 2010, 97(24):241107-1-3.

[159] Liang H K, Yu S F. An index-guided ZnO random laser array [J].IEEE Photon. Technol. Lett., 2011, 23(8):522-524.

[160] Liang H K, Yu S F, Yang H Y. Directional and controllable edge-emitting ZnO ultraviolet random laser diodes [J].Appl. Phys. Lett., 2010, 96(10):101116-1-3.

[161] Du G T, Zhao W, Wu G G, et al. Electrically pumped lasing from p-ZnO/n-GaN heterojunction diodes [J]. Appl. Phys. Lett., 2012, 101(5):053503-1-3.

[162] Shi Z F, Zhang Y T, Xi X C, et al. Electrically driven ultraviolet random lasing from an n-MgZnO/i-ZnO/SiO2/p-Si asymmetric double heterojunction [J].Nanoscale, 2013, 5(11):5080-5084.

[163] Zhu H, Shan C X, Yao B, et al. Ultralow-threshold laser realized in zinc oxide [J]. Adv. Mater., 2009, 21(16):1613-1617.

[164] Qiao Q, Shan C X, Zheng J, et al. Surface plasmon enhanced electrically pumped random lasers [J]. Nanoscale, 2013, 5(2):513-517.

[165] Sun X W, Ling B, Zhao J L, et al. Ultraviolet emission from a ZnO rod homojunction light-emitting diode [J]. Appl. Phys. Lett., 2009, 95(13):133124-1-3.

[166] Yang Y, Sun X W, Tay B K, et al., A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation [J]. Appl. Phys. Lett., 2008, 93(25):253107-1-3.

[167] Chu S, Wang G P, Zhou W H, et al. Electrically pumped waveguide lasing from ZnO nanowires [J]. Nat. Nanotechnol., 2011, 6(8):506-510.

[168] Zhang Q, Qi J J, Li X, et al. Electrically pumped lasing from single ZnO micro/nanowire and poly (3, 4-ethylenedioxythiophene)∶poly (styrenexulfonate) hybrid heterostructures [J]. Appl. Phys. Lett., 2012, 101(4):043119-1-3.

[169] Dai J, Xu C X, Sun X W. ZnO-microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes [J].Adv. Mater., 2011, 23(35):4115-4119.

申德振, 梅增霞, 梁会力, 杜小龙, 叶建东, 顾书林, 吴玉喜, 徐春祥, 朱刚毅, 戴俊, 陈明明, 季旭, 汤子康, 单崇新, 张宝林, 杜国同, 张振中. 氧化锌基材料、异质结构及光电器件[J]. 发光学报, 2014, 35(1): 1. SHEN De-zhen, MEI Zeng-xia, LIANG Hui-li, DU Xiao-long, YE Jian-dong, GU Shu-lin, WU Yu-xi, XU Chun-xiang, ZHU Gang-yi, DAI Jun, CHEN Ming-ming, JI Xu, TANG Zi-kang, SHAN Chong-xin, ZHANG Bao-lin, DU Guo-tong, ZHANG Zhen-zhong. ZnO-based Matierial, Heterojunction and Photoelctronic Device[J]. Chinese Journal of Luminescence, 2014, 35(1): 1.

本文已被 24 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!