激光与光电子学进展, 2013, 50 (12): 120001, 网络出版: 2013-12-20   

硫系玻璃光子晶体光波导的制备研究进展 下载: 560次

Research Progress of Fabrication of Chalcogenide Glass Photonic Crystal Waveguide
作者单位
宁波大学信息科学与工程学院 红外材料与器件实验室, 浙江 宁波 315211
摘要
光子晶体是一种介质常数周期性变化的人工介质材料,具有光子带隙和光子局域两个主要特征。光子晶体光波导是利用光子带隙特性传输光信息的光学器件。与传统的条形光波导相比,它最大的优势是在大的拐角处具有很低的传输损耗(如在60°弯曲时传输损耗可以降低到5%),因此非常适合用于集成光学。从硫系玻璃材料的特征入手,详细介绍了聚焦离子束和电子束曝光这两种光子晶体光波导常用的制备方法,通过这两种方法制备出来的光子晶体光波导都具有较高的表面平整度和较低的传输损耗。对两种方法的制备工艺和特点进行了比较。最后简单介绍了硫系光子晶体光波导的应用,并对硫系光子晶体光波导的发展前景做了展望。
Abstract
Photonic crystal is an artificial dielectric material whose dielectric constant changes periodically. It has two important features: photonic band gap and photon localization. Photonic crystal waveguide transmits light signal using photonic band gap. Compared with conventional strip waveguide, the most significant advantage of photonic crystal waveguide is that there is very little transmission loss at the corner (the loss can be decreased to about 5% at the corner of 60°). Therefore, photonic crystal waveguide has important applications in the field of integrated optics. In this paper, we start with the features of chalcogenide glass, and introduce two types of methods in fabricating photonic crystal waveguides of chalcogenide glass. Through these two fabrication methods, photonic crystal waveguides can be obtained with both high quality of surfaces and low transmission loss. The differences between the two methods are also compared and the applications of the photonic crystal waveguide based on chalcogenide glass are introduced. Finally, the prospects of the photonic crystal waveguide based on chalcogenide glass are put forward.
参考文献

[1] 陈昱, 沈祥, 徐铁峰, 等. 硫系玻璃光波导研究进展[J]. 激光与光电子学进展, 2011, 48(11): 111301.

    Chen Yu, Shen Xiang, Xu Tiefeng, et al.. Research progress of chalcogenide glass waveguide [J]. Laser & Optoelectronics Progress, 2011, 48(11): 111301.

[2] 姜中宏, 刘粤惠, 戴世勋. 新型光功能玻璃[M]. 北京: 化学工业出版社, 2008. 245-246.

    Jiang Zhonghong, Liu Yuehui, Dai Shixun. New Optical Functional Glass [M]. Beijing: Chemical Industry Press, 2008. 245-246.

[3] 陈方, 刘瑞鹏, 祁志美. 铌酸锂基集成光波导马赫曾德尔干涉仪的设计、制备及其特性的初步测试[J]. 光学学报, 2011, 31(5): 0513001.

    Chen Fang, Liu Ruipeng, Qi Zhimei. Design, fabrication and characterization of LiNbO3-based integrated optical waveguide Mach-Zehnder interferometer [J]. Acta Optica Sinica, 2011, 31(5): 0513001.

[4] 高原, 张晓霞, 廖进昆. 有机聚合物非对称脊波导单模条件分析[J]. 光学学报, 2011, 31(8): 0813001.

    Gao Yuan, Zhang Xiaoxia, Liao Jinkun. Analysis of single-mode condition for organic polymer asymmetric ridge waveguide [J]. Acta Optica Sinica, 2011, 31(8): 0813001.

[5] 沈亮标, 徐清波, 剪明明, 等. 平面波导光传感器的研究进展[J]. 激光与光电子学进展, 2009, 46(5): 24-30.

    Shen Liangbiao, Xu Qingbo, Jian Mingming, et al.. Development of planar waveguides for optical sensing [J]. Laser & Optoelectronics Progress, 2009, 46(5): 24-30.

[6] 宋牟平, 邹良港. 基于硅光波导四波混频的色散监测技术[J]. 中国激光, 2010, 37(S1): 181-185.

    Song Muping, Zou Lianggang. Chromatic dispersion monitoring based on four-wave mixing in silicon optical waveguides [J]. Chinese J Lasers, 2010, 37(S1): 181-185.

[7] 高永锋, 周明, 周骏, 等. 光子晶体波导定向耦合功分器的设计[J]. 中国激光, 2011, 38(5): 0505003.

    Gao Yongfeng, Zhou Ming, Zhou Jun, et al.. Design of power splitter by directional coupling between photonic crystal waveguides [J]. Chinese J Lasers, 2011, 38(5): 0505003.

[8] 章亮, 张巍, 聂秋华, 等. 二维光子晶体波导研究进展[J]. 激光与光电子学进展, 2013, 50(3): 030008.

    Zhang Liang, Zhang Wei, Nie Qiuhua, et al.. Research progress of two-dimensionnal photonic crystal waveguides [J]. Laser & Optoelectronics Progress, 2013, 50(3): 030008.

[9] A Zakery, S R Elliott. Optical properties and applications of chalcogenide glasses: a review [J]. J Non-Cryst Solids, 2003, 330(1-3): 1-12.

[10] 刘明, 谢常青, 王丛舜. 微细加工技术[M]. 北京: 化学工业出版社, 2004. 50-65.

    Liu Ming, Xie Changqing, Wang Congshun. Microfabrication Technology [M]. Beijing: Chemical Industry Press, 2004. 50-65.

[11] Zhou Changzhu, Liu Yazhao, Li Zhiyuan. Waveguide bend of 90° in two-dimensional triangular lattice silicon photonic crystal slabs [J]. Chin Phys Lett, 2010, 27(8): 084203.

[12] A Di Falco, M Massari, M G Scullion, et al.. Propagation losses of slotted photonic crystal waveguides [J]. IEEE Photon Journal, 2012, 4(5): 1536-1541.

[13] 刘明, 陈宝钦, 梁俊厚. 电子束曝光技术发展动态[J]. 微电子学, 2000, 30(2): 117-120.

    Liu Ming, Chen Baoqin, Liang Junhou. Electron beam lithography: an overview [J]. Microelectronics, 2000, 30(2): 117-120.

[14] A R Liu, R Jones, L Liao, et al.. A high-speed silicon modulator based on a metal-oxide-semiconductor capacitor [J]. Nature, 2004, 427(6975): 615-618.

[15] F Xia, L Sekaric, Y Vlasov. Ultracompact optical buffers on a silicon chip [J]. Nature Photon, 2007, 1(1): 65-67.

[16] G K Celler, S Cristoloveanu. Frontiers of silicon-on-insulator [J]. J Appl Phys, 2003, 93(9): 4955-4987.

[17] S McNab, N Moll, Y Vlasov. Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides [J]. Opt Express, 2003, 11(22): 2927-2939.

[18] Y Taur, D A Buchanan, W Chen, et al.. CMOS scaling into the nanometer regime [J]. Proceedings of the IEEE, 1997, 85(4): 486-504.

[19] T Tsuchizawa, K Yamada, H Fukuda, et al.. Microphotonics devices based on silicon microfabrication technology [J]. IEEE J Sel Top Quantum Electron, 2005, 11(1): 232-240.

[20] W Bogaerts, R Baets, P Dumon, et al.. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology [J]. J Lightwave Technol, 2005, 23(1): 401-412.

[21] W Chen, H Ahmed. Fabrication of 5~7 nm wide etched lines in silicon using 100 keV electron-beam lithography and polymethylmethacrylate resist [J]. Appl Phys Lett, 1993, 62(13): 1499-1501.

[22] J Fujita, Y Ohnishi, Y Ochiai, et al.. Ultrahigh resolution of calixare negative resist in electron beam lithography [J]. Appl Phys Lett, 1996, 68(9): 1297-1299.

[23] L R Harriott. Scattering with angular limitation projection electron beam lighgraphy for suboptical lithography [J]. J Vac Sci Technol B, 1997, 15(6): 2130-2135.

[24] J I Martin, J Nogues, K Liu, et al.. Ordered magnetic nanostructures: fabrication and properties [J]. J Magn Magn Mater, 2003, 256(1-3): 449-501.

[25] S A Rishton, D P Kern. Piont exposure distribution measurements for proximity correction in electron-beam lithography on a sub-100 nm scale [J]. J Vac Sci Technol B, 1987, 5(1): 135-141.

[26] G M Wallraff, W D Hinsberg. Lithographic imaging techniques for the formation of nanoscopic features [J]. Chem Rev, 1999, 99(7): 1801-1822.

[27] Y N Xia, J A Rogers, K E Paul, et al.. Unconventional methods for fabricating and patterning nanostructures [J]. Chem Rev, 1999, 99(7): 1823-1848.

[28] M S Abrahams, C J Buiocchi. Etching of dislocation on low-index faces of gas [J]. J Appl Phys, 1965, 36(9): 2855-2857.

[29] K E Bean. Anisotropic etching of silicon [J]. IEEE Trans Electron Devices, 1978, 25(10): 1185-1193.

[30] J W Coburn, H F Winters. Plasma-etching: discussion of mechanisms [J]. J Vac Sci Technol, 1979, 16(2): 391-403.

[31] C J Mogab, A C Admas, D J Flamm. Plasma etching of Si and SiO2: the effects of oxygen additions to CF4 plasmas [J]. J Appl Phys, 1987, 49(7): 3796-3803.

[32] H Seidel, L Csepregi, A Heuberger, et al.. Anisotropic etching of crystalline silicon in alkaline-solutions orientation dependence and behavior of passivation layers [J]. J Electrochem Soc, 1990, 137(11): 3612-3626.

王贤旺, 张巍, 章亮, 李军建, 徐铁峰. 硫系玻璃光子晶体光波导的制备研究进展[J]. 激光与光电子学进展, 2013, 50(12): 120001. Wang Xianwang, Zhang Wei, Zhang Liang, Li Junjian, Xu Tiefeng. Research Progress of Fabrication of Chalcogenide Glass Photonic Crystal Waveguide[J]. Laser & Optoelectronics Progress, 2013, 50(12): 120001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!