红外与毫米波学报, 2016, 35 (6): 656, 网络出版: 2017-01-12   

干涉式被动亚毫米波成像系统

Passive submillimeter-wave imaging demonstrated by a two-element interferometer
作者单位
1 中国科学院国家空间科学中心 微波遥感重点实验室, 北京 100190
2 中国科学院大学, 北京 100049
摘要
通过特殊设计的高精度SMMW器件, 实现了一套基于二单元干涉仪的干涉式辐射计系统.针对该系统的自身特点, 作者提出了点源目标响应定标方法来降低系统误差.系统完成后, 分别进行了干涉条纹实验和点源目标成像实验.经测试, 系统的线性相位误差小于2°, 角分辨率优于0.57°.系统实测性能和理论分析结果一致.以上研究为今后设计高分辨率亚毫米波干涉式成像辐射计提供了重要的参考价值.
Abstract
In this paper, an SMMW interferometric radiometer concept is demonstrated by a two-element interferometer with dedicated high accuracy SMMW devices. Point-source calibration method is introduced in order to reduce instrument errors. Interference fringes and point target images are presented by this SMMW interferometer. The linear phase error of the interference fringes is less than 2° and the angular resolution is better than 0.57°. The measured performance characteristics of the two-element interferometer are consistent with the theoretical analysis. This interferometer demonstrates a new method for passive SMMW remote sensing.
参考文献

[1] Maestrini A, Ward J S, Gill J J, et al. A 540640GHz Highefficiency Fouranode frequency tripler[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53,(9): 2835-2843.

[2] Leong K, Mei X B, Yoshida W, et al. Progress in InP HEMT submillimeter wave circuits and packaging[C]. In IEEE Compound Semiconductor Integrated Circuit Symposium, New Orleans, LA, 2015, pp.1-4.

[3] ZHANG YueDong, JIANG YueSong, HE YunTao, et al. Passive millimeterwave imaging using photonic processing technology[J]. J. Infrared Millim. Waves( 张跃东,江月松,何云涛,等. 基于光子学处理技术的被动毫米波成像,红外与毫米波学报),2011, 30(6): 551-555.

[4] Luukanen A, Kiuru T, Leivo M M, et al. Passive threecolour submillimetrewave video camera[J]. Proc. of SPIE, 2015, 8715:87150F .

[5] Irimajiri Y, Manabe T, Ochiai S, et al. BSMILES—A balloonborne superconducting submillimeterwave limbemission sounder for stratospheric measurements[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1):

[6] Pickett H M, Poynter R L, Cohen E A. Submillimeter, millimeter, and microwave spectral line catalog[J]. J. Quant. Spectrosc. Radiat. Transf., 1998, 60(5):883-890.

[7] Waters J W, Froidevaux L, Harwood R S. The earth observing system microwave limb sounder (EOS MLS) on the aura satellite[J]. IEEE Trans. Geosci. Remote Sens., 2006, 44(5):1075-1092.

[8] Kikuchi K, Nishibori T, Ochiai S. Overview and early results of the superconducting submillimeterwave limbemission sounder (SMILES)[J]. J. Geophys. Res., 2010,115(D23):D23306-1-D23306-12.

[9] Liu H, Wu J, Zhang S W. Conceptual design and breadboarding activities of geostationary interferometric microwave sounder (GIMS)[J]. In Proc. IGARSS, Cape Town, South Africa, 2009, pp. 1039-1042.

[10] Zhang C, Liu H, Wu J, et al. Imaging analysis and first results of the geostationary interferometric microwave sounder demonstrator[J]. IEEE Trans. Geosci. Remote Sens., 2015, 53(1):207-218.

[11] Read W G, Shippony Z, Schwartz M J, et al. The clearsky unpolarized forward model for the EOS aura microwave limb sounder (MLS)[J]. IEEE Trans. Geosci. Remote Sens., 2006, 44(5):1367-1379.

[12] RodriguezMorales F, Yngvesson K S, Gerecht E. A terahertz focal plane array using HEB superconducting mixers and MMIC IF amplifiers[J]. IEEE Microw. Compon. Lett., 2005,15(4):199-201.

[13] Ruf C S, Swift C T, Tanner A B, et al. Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth[J]. IEEE Trans. Geosci. Remote Sens., 1998,26(5):597-611.

[14] Brown M A, Torres F, Corbella I, et al. SMOS calibration[J].IEEE Trans. Geosci. Remote Sens., 2008, 46(3):646-658.

[15] Corbella I, Torres F, Camps A, et al. MIRAS endtoend calibration: Application to SMOS L1 Processor[J]. IEEE Trans. Geosci. Remote Sens., 2005, 43(5):1126-1134.

[16] Tanner A B, Wilson W J, Lambrigsten B H. Initial results of the geostationary synthetic thinned array radiometer (GeoSTAR) demonstrator instrument[J]. IEEE Trans. Geosci. Remote Sens., 2007, 45(7):1947-1957.

[17] MENG Jing, ZHANG DeHai, JIANG ChangHong, et al. Research on the practical design method of 225 GHz tripler[J]. J. Infrared Millim. Waves(孟进,张德海,蒋长宏,等. 225 GHz三倍频器实用设计方法,红外与毫米波学报),2015,34(2):190-195.

[18] ZHAO Xin, JIANG ChangHong, Zhang DeHai, et al. Design of the 450 GHz subharmonic mixer based on Schottky diode[J]. J. Infrared Millim. Waves(赵鑫,蒋长宏,张德海,等. 基于肖特基二极管的450GHz二次谐波混频器, 红外与毫米波学报),2015, 34(3):301-306.

[19] Corbella I, Duffo N, Vallllossera M. The visibility function in interferometric aperture synthesis radiometry[J]. IEEE Trans. Geosci. Remote Sens., 2004, 42(8):1677-1682.

[20] Butora R, Neira M M, Luis A, et al. Fringewashing function calibration in aperture synthesis microwave radiometry[J]. Radio Science, 2003, 38(2):15-1.

[21] Camps A, Bara J, Corbella I, et al. The processing of hexagonally sampled signals with standard rectangular techniques: Application to 2D large aperture synthesis interferometric radiometers[J]. IEEE Trans. Geosci. Remote Sens., 1997, 35(1): 183-190.

[22] Zhang C, Wu J, Sun W Y. Applications of pseudopolar FFT in synthetic aperture radiometer imaging[J].PIERS Online, 2007,3(1).

[23] WU QiongZhi, CAI ChunXia, DING YiChen, et al. Design and implementation of 5Gsps highspeed data acquisition system[J]. Electronic Design Engineering(吴琼之,蔡春霞, 丁一辰,等. 5Gsps高速数据采集系统的设计与实现, 电子设计工程),2012, 20(1):154-157.

[24] Neira M M, Suess M, Kainulainen J. The flat target transformation[J]. IEEE Trans. Geosci. Remote Sens., 2008, 46(3):613-620.

韩东浩, 刘浩, 张德海, 孟进, 赵鑫, 张颖, 吴季. 干涉式被动亚毫米波成像系统[J]. 红外与毫米波学报, 2016, 35(6): 656. HAN Dong-Hao, LIU Hao, ZHANG De-Hai, MENG Jin, ZHAO Xin, ZHANG Ying, WU Ji. Passive submillimeter-wave imaging demonstrated by a two-element interferometer[J]. Journal of Infrared and Millimeter Waves, 2016, 35(6): 656.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!