激光与光电子学进展, 2011, 48 (11): 111402, 网络出版: 2011-09-30   

中红外光纤激光器的研究进展 下载: 1316次

Progress of Mid-Infrared Fiber Lasers
作者单位
电子科技大学光电信息学院, 四川 成都 610054
摘要
中红外光纤激光器因其特殊的输出波长和良好的光束质量,在**、大气通信、生物医疗等领域有着广泛的应用前景。从不同掺杂稀土离子的角度介绍了氟化物玻璃和硫化物玻璃中红外光纤激光器的工作原理和结构,并阐述了国内外最新的研究进展。同时,介绍了本研究小组在中红外光纤激光器方面的研究工作及取得的最新成果。最后,对中红外光纤激光器的发展前景进行了展望。
Abstract
Mid-infrared fiber lasers have broad application prospects in military, atmospheric communication, medical and other fields owing to their special output wavelength and high beam quality. The latest progress of fluoride and chalcogenide mid-infrared fiber lasers is described from the perspective of different rare-earth doped ions. Meanwhile, our latest progress in mid-infrared fiber lasers is also introduced. Finally, the development trends of the mid-infrared fiber lasers are prospected.
参考文献

[1] J. S. Sanghera, L. B. Shaw, L.E. Busse et al.. Infrared optical fibers and their applications[C]. SPIE, 1999, 3849: 38~49

[2] M. Pollnau, S. D. Jackson. Advances in Mid-Infrared Fiber Lasers. In: Mid-Infrared Coherent Sources and Applications. The NATO Science for Peace and Security Programme, Series B: Physics and Biophysics[M]. Berlin: Springer, 2008. 315~346

[3] P. W. France, M. G. Drexhage, J. M. Parker et al.. Fluoride Glass Optical Fibres[M]. Glasgow: Blackie, 1990

[4] L. B. Shaw, B. Cole, P. A. Thielen et al.. Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber[J]. IEEE J. Quantum Electron., 2001, 37(9): 1127~1137

[5] Y. D. Huang, M. Mortier, F. Auzel. Stark level analysis for Er3+-doped ZBLAN glass[J]. Opt. Mater., 2001, 17(4): 501~511

[6] S. D. Jackson. Single-transverse-mode 2.5 W holmium-doped fluoride fiber laser operating at 2.86 μm[J]. Opt. Lett., 2004, 29(4): 334~336

[7] D. Faucher, M. Bernier, N. Caron et al.. Erbium-doped all-fiber laser at 2.94 μm[J]. Opt. Lett., 2009, 34(21): 3313~3315

[8] S. D. Jackson. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm[J]. Opt. Lett., 2009, 34(15): 2327~2329

[9] I. D. Aggarwal, L. B. Shaw, J. S. Sanghera. Chalcogenide glass fiber-based mid-IR sources and applications[C]. SPIE, 2007, 6453: 645312

[10] D. C. Hanna, I. M. Jauncey, R. M. Percival et al.. Continuous-wave oscillation of a monomode thulium-doped fibre laser[J]. Electron. Lett., 1988, 24(19): 1222~1223

[11] W. L. Barnes, J. E. Townsend. Highly tunable and efficient diode pumpe doperation of Tm3+ doped fibre lasers[J]. Electron. Lett., 1990, 26(11): 746~747

[12] J. N. Carter, R.G. Smart, D.C. Hanna et al.. CW diode-pumpe doperation of 1.97 μm thulium-doped fluorozirconate fibre laser[J]. Electron. Lett., 1990, 26(9): 599~601

[13] T. Y. Fan, G. Huber, R. L. Byer et al.. Spectroscopy and diodelaser-pumped operation of Tm, HoYAG[J]. IEEE J. Quantum Electron., 1988, 24(6): 924~933

[14] J. Y. Allain, M. Monerie, H. Poignant. Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium-doped fluorozirconate fibre[J]. Electron. Lett., 1989, 25(24): 1660~1662

[15] R. M. Percival, D. Szebesta, S. T. Davey. Highly efficient CW cascade operation of 1.47 and 1.82 μm transitions in Tm doped fluoride fibre laser[J]. Electron. Lett., 1992, 28(20): 1866~1868

[16] M. Eichhorn, S. D. Jackson. Comparative study of continuous wave Tm3+-doped silica and fluoride fiber lasers[J]. Appl. Phys. B, 2008, 90(1): 35~41

[17] J. K. Tyminski, D. M. Franich, M. Kokta. Gain dynamics of TmHoYAG pumped in near infrared[J]. J. Appl. Phys., 1989, 65(8): 3181~3188

[18] V. A. French, R. R. Petrin, R. C. Powell et al.. Energy-transfer processes in Y3Al5O12Tm, Ho[J]. Phys. Rev. B, 1992, 46(13): 8018~8026

[19] M. C. Brierley, P. W. France, C. A. Millar. Lasing at 2.08 μm and 1.38 μm in a holmium doped fluorozirconate fiber laser[J]. Electron. Lett., 1988, 24(9): 539~540

[20] S. D. Jackson. 8.8 W diode-cladding-pumped Tm3+, Ho3+ doped fluoride fibre laser[J]. Electron. Lett., 2001, 37(13): 821~822

[21] S. D. Jackson. Single-transverse-mode 2.5 W holmium-doped fluoride fiber laser operating at 2.86 μm[J]. Opt. Lett., 2004, 29(4): 334~336

[22] S. D. Jackson. High-power and highly efficient diode-cladding pumped holmium-doped fluoride fiber laser operating at 2.94 μm[J]. Opt. Lett., 2009, 34(15): 2327~2329

[23] M. Pollnau, Ch. Ghisler, W. Lüthy et al.. Three-transition cascade erbium laser at 1.7, 2.7, and 1.6 μm[J]. Opt. Lett., 1997, 22(9): 612~614

[24] J. Y. Allain, M. Monerie, H. Poignant. Erbium doped fluorozirconate single-mode fibre lasing at 2.71 μm[J]. Electron. Lett., 1989, 25(1): 28~29

[25] Toebben. CW lasing at 3.45 μm in erbium-doped fluorozirconate fibres[J]. Frequenz, 1991, 45(9-10): 250~252

[26] Xiushan Zhu, Ravi Jain. Compact 2 W wavelength-tunable ErZBLAN mid-infrared fiber laser[J]. Opt. Lett., 2007, 32(16): 2381~2383

[27] Shigeki Tokita, Masanao Murakami,Seiji Shimizu et al.. Liquid-cooled 24 W mid-infrared ErZBLAN fiber laser[J]. Opt. Lett., 2009, 34(20): 3062~3064

[28] Martin Bernier, Dominic Faucher, Nicolas Caron et al.. Highly stable and efficient erbium-doped 2.8 μm all fiber laser[J]. Opt. Express, 2009, 17(9): 16941~16946

[29] Dominic Faucher, Martin Bernier, Guillaume Androz et al.. 20 W passively cooled single-mode all-fiber laser at 2.8 μm[J]. Opt. Lett., 2011, 36(7): 1104~1106

[30] S. D. Jackson, Terence A. King, Markus Pollnau. Diode-pumped 1.7 W erbium 3 μm fiber laser[J]. Opt. Lett., 1999, 24(16): 1133~1135

[31] Xiushan Zhu, Ravi Jain. Numerical analysis and experimental results of high-power Er/Pr:ZBLAN 2.7 μm fiber lasers with different pumping designs[J]. Appl. Opt., 2006, 45(27): 7118~7125

[32] S. D. Jackson. High-power erbium cascade fibre laser[J]. Electron. Lett., 2009, 45(16): 830~832

[33] S. D. Jackson, Markus Pollnau, Jianfeng Li. Diode pumped erbium cascade fibre lasers[J]. IEEE J. Quantum Electron., 2011, 47(4): 471~478

[34] O. P. Kulkarni, C. Xia, D. J. Lee et al.. Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient[J]. Opt. Express, 2006, 14(17): 7924~7930

[35] P. A. Thielen, L. B. Shaw, J. S. Sanghera et al.. Modeling of a mid-IR chalcogenide fiber Raman laser [J]. Opt. Express, 2003, 11(24): 3248~3253

[36] S. D. Jackson, Gilberto Anzueto-Sánchez. Chalcogenide glass Raman fiber laser[J]. Appl. Phys. Lett., 2006, 88(22): 221106

[37] Jianfeng Li, Yu Chen, Ming Chen et al.. Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser[J]. Opt. Commun., 2010, 284(5): 1278~1283

陈昊, 李剑峰, 欧中华, 杨怡, 陈明, 罗鸿禹, 魏涛, 刘永智. 中红外光纤激光器的研究进展[J]. 激光与光电子学进展, 2011, 48(11): 111402. Chen Hao, Li Jianfeng, Ou Zhonghua, Yang Yi, Chen Ming, Luo Hongyu, Wei Tao, Liu Yongzhi. Progress of Mid-Infrared Fiber Lasers[J]. Laser & Optoelectronics Progress, 2011, 48(11): 111402.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!