张钧翔 1,2付士杰 1,2,*盛泉 1,2,**夏文新 1,2[ ... ]姚建铨 1,2
作者单位
摘要
1 天津大学精密仪器与光电子工程学院,天津 300072
2 天津大学光电信息技术教育部重点实验室,天津 300072
为了提升中红外光纤激光器的功率和效率,基于掺铒氟化物光纤的高效热管理技术、高性能中红外光纤端帽制备技术和高功率泵浦激光的高效耦合技术,利用高功率976 nm半导体激光器,单端泵浦8 m长、掺杂铒离子的摩尔分数为7%的氟化物增益光纤,实现了33.8 W的中红外2.8 μm激光输出,据我们所知,这是单端泵浦中红外光纤激光器的最高功率水平,此时激光器的光光转换效率达26.4%。
激光器 中红外光纤激光器 单端泵浦 高功率激光 掺铒氟化物光纤 
中国激光
2023, 50(7): 0715001
作者单位
摘要
合肥工业大学物理学院, 安徽 合肥 230009
实验研究了基于光纤布拉格光栅 (FBG) 的直接输出 1570 nm 单波长光纤激光器, 采用光纤耦合器搭建塞格纳克宽带反射器并与部分反射光纤光栅构建直腔激光器, 通过优化光栅反射率和输出方向实现了最高谐振效率为 24.42%、最大输出功率为 2.8 W、边模抑制比为 65 dB 的 1570 nm 光纤激光直接输出。通过增大腔长增加激光器谐振纵模数量, 从而基于纵模间的平均效应实现了 1570 nm 单波长光纤激光器的稳定无拍频输出, 进而利用该激光器作为掺铥光纤的泵浦源实现了 2 μm 波段光纤激光器被动锁模输出。
激光技术 中红外光纤激光器 光纤布拉格光栅 无拍频激光器 被动锁模 laser techniques mid-infrared fiber laser fiber Bragg grating beat-free laser passively mode-locking 
量子电子学报
2022, 39(4): 591
作者单位
摘要
北京工业大学材料与制造学部超短脉冲激光及应用研究所, 北京 100124

建立了3.5 μm双波长泵浦(DWP)Er∶ZBLAN光纤激光器的理论模型,并首次引入基于弛豫-打靶组合方法(RSM)求解3.5-μm-DWP-Er∶ZBLAN光纤激光器边值问题的稳态分析算法,同时分析了标准弛豫算法在此种情况下的各项计算特性,对两种方法进行了详细对比。研究结果表明,在3.5-μm-DWP-Er∶ZBLAN理论模型下,所提算法相比标准的弛豫法有着明显优势。一方面对猜测值具有低敏感性,无需在仿真前对猜测值进行高精度的估值;另一方面在高输出精度下,算法收敛速度可达标准弛豫法的10倍以上,有效提升了仿真的计算速度和准确度。所提算法对3.5-μm-DWP-Er∶ZBLAN光纤激光器的理论特性研究有着较大的实用价值。

激光光学 中红外光纤激光器 氟化锆基光纤 3.5 μm; 数值模拟 弛豫-打靶组合方法 边值问题 
中国激光
2021, 48(11): 1101004
作者单位
摘要
电子科技大学光电信息学院, 四川 成都 610054
中红外光纤激光器因其特殊的输出波长和良好的光束质量,在**、大气通信、生物医疗等领域有着广泛的应用前景。从不同掺杂稀土离子的角度介绍了氟化物玻璃和硫化物玻璃中红外光纤激光器的工作原理和结构,并阐述了国内外最新的研究进展。同时,介绍了本研究小组在中红外光纤激光器方面的研究工作及取得的最新成果。最后,对中红外光纤激光器的发展前景进行了展望。
光纤激光器 中红外光纤激光器 氟化物光纤 硫化物光纤 拉曼光纤 
激光与光电子学进展
2011, 48(11): 111402
作者单位
摘要
成都电子科技大学光电信息学院, 成都 610054
根据2 μm掺铥光纤激光泵浦中红外硫化玻璃光纤拉曼激光器的模型, 采用非线性耦合方程组对激光器的性能进行了研究与分析。同时, 对激光器各参数包括光纤长度、输出耦合器反射率、光纤散射损耗对激光器性能的影响进行了分析并给出了优化结果。数值仿真结果表明, 在一定条件下, 2 μm泵浦硫化玻璃光纤产生拉曼激光的斜率效率可以超过85%。另外, 光纤长度和输出耦合器反射率不仅对输出激光功率的影响很大, 而且是相互影响的, 必须同时进行优化。结果也表明, 输出激光的功率随光纤散射损耗增加急剧线性下降。以上的结果可以用于硫化玻璃光纤级联拉曼激光器的实验指导和优化设计。
光纤拉曼激光器 中红外光纤激光器 硫化玻璃光纤 拉曼效应 非线性耦合方程组 fiber Raman laser mid-infrared fiber laser chalcogenide fiber Raman effect nonlinear coupled equations 
光散射学报
2010, 22(3): 220

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!