人工晶体学报, 2020, 49 (8): 1405, 网络出版: 2020-11-11  

磷属化物非线性光学晶体研究进展

Research Progress on Pnictide Nonlinear Optical Crystals
陈金东 1,2林晨升 1叶宁 1,3,*
作者单位
1 中国科学院福建物质结构研究所, 福州 350002
2 中国科学院大学, 北京 100049
3 中国福建光电信息科学与技术创新实验室, 福州 350108
摘要
红外非线性光学晶体可以通过频率转换输出中远红外激光, 在**和民用领域都具有重要的应用。硫属化物和磷属化物皆是优秀的中远红外非线性光学材料的候选体系, 近二十年来, 硫属非线性光学材料得到了广泛研究和应用, 然而对磷属非线性光学材料的研究还相当匮乏。本文从新材料探索方面, 综述了目前已经报道的磷属非线性光学材料的研究进展, 按照晶体结构将其分为三大类, 即经典的黄铜矿型结构、同原子键结构以及其他四面体堆积结构。主要讨论了这些化合物的晶体结构、非线性光学性能以及构效关系。最后探讨了磷属红外非线性光学晶体未来的发展方向。
Abstract
Infrared nonlinear optical crystals, which can generate coherent mid- and far-infrared laser through frequency conversion technology, play an increasingly significant role in military and civil fields. Chalcogenides and pnictides have been widely regarded as excellent candidates for mid- and far-infrared nonlinear optical crystals. Over the last two decades, chalcogenide nonlinear optical materials have been widely investigated and applied, however, pnictides have been rarely studied for their nonlinear optical properties. The advances of pnictide nonlinear optical materials has been reviewed from the aspect of new material exploration. These compounds were divided into three types i.e. classical chalcopyrite, structures with homoatomic bonds and structures with tetrahedra units. The crystal structures, physical properties and structure-properties relationships were analyzed. Finally, the future development of pnictide nonlinear optical materials was discussed.
参考文献

[1] Gmachl C, Capasso F, Kohler R, et al. Mid-infrared tunable quantum cascade lasers for gas-sensing applications[J].IEEE Circuits & Devices,2000,16(3): 10-18.

[2] Capasso F, Paiella R, Martini R, et al. Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission[J].IEEE Journal of Quantum Electronics,2002,38(6): 511-532.

[3] Fan W, Zhang S, Panoiu N C, et al. Second harmonic generation from a nanopatterned isotropic nonlinear material[J].Nano Letters,2006,6(5): 1027-1030.

[4] Guo S P, Chi Y, Guo G C. Recent achievements on middle and far-infrared second-order nonlinear optical materials[J].Coordination Chemistry Reviews,2017,335: 44-57.

[5] Fan Y X, Eckardt R C, Byer R L, et al. AgGaS2 infrared parametric oscillator[J].Applied Physics Letters,1984,45(4): 313-315.

[6] Eckardt R C, Fan Y X, Byer R L, et al. Broadly tunable infrared parametric oscillator using AgGaSe2[J].Applied Physics Letters,1986,49(11): 608-610.

[7] Vodopyanov K L, Ganikhanov F, Maffetone J P, et al. ZnGeP2 optical parametric oscillator with 3.8-12.4 μm tunability[J].Optics Letters,2000,25(11): 841-843.

[8] Akiko H, Kiyoshi K. New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2[J].Japanese Journal of Applied Physics,1997,36(2): 700-703.

[9] Catella G C, Shiozawa L R, Hietanen J R, et al. Mid-IR absorption in AgGaSe2 optical parametric oscillator crystals[J].Applied Optics,1993,32(21): 3948-3951.

[10] Budni P A, Pomeranz L A, Lemons M L, et al. Efficient Mid-infrared laser using 1.9 μm-Pumped Ho∶YAG and ZnGeP2 optical parametric oscillators[J].Journal of the Optical Society of America B,2000,17(5): 723-728.

[11] Isaenko L, Vasilyeva I, Merkulov A, et al. Growth of new nonlinear crystals LiMX2 (M=Al, In, Ga; X=S, Se, Te) for the mid-IR optics[J].Journal of Crystal Growth,2005,275(1-2): 217-223.

[12] Lin X, Guo Y, Ye N. BaGa2GeX6 (X=S, Se): new Mid-IR nonlinear optical crystals with large band gaps[J].Journal of Solid State Chemistry,2012,195(52): 172-177.

[13] Lin X, Zhang G, Ye N. Growth and characterization of BaGa4S7: a new crystal for mid-IR nonlinear optics[J].Crystal Growth & Design,2009,9(2): 1186-1189.

[14] Yao J, Mei D, Bai L, et al. BaGa4Se7: A new congruent-melting IR nonlinear optical material[J].Inorganic Chemistry,2010,41(50): 9212-9216.

[15] Yelisseyev A P, Isaenko L I, Krinitsin P, et al. Crystal growth, structure, and optical properties of LiGaGe2Se6[J].Inorganic Chemistry,2016,55(17): 8672-8680.

[16] Kemlin V, Boulanger B, Petrov V, et al. Nonlinear, dispersive, and phase-matching properties of the new chalcopyrite CdSiP2 [Invited][J].Optical Materials Express,2011,1(7): 1292-1300.

[17] Zhu C, Verozubova G A, Mironov Y P, et al. Two-temperature synthesis of nonlinear optical compound CdGeAs2[J].Journal of Crystal Growth,2016: S0022024816305607.

[18] Skauli T, Vodopyanov K L, Pinguet T J, et al. Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation[J].Optics Letters,2002,27(8): 628-630.

[19] Nikogosyan D N. Nonlinear optical crystals a complete survey[M]: New York: Springer Science and Business Media,2005.

[20] Boyd G D, Buehler E, Storz F G. Linear and nonlinear optical properties of ZnGeP2 and CdSe[J].Applied Physics Letters,1971,18(7): 301-304.

[21] Herbert S, Eisenmann B, Wiking M. Zintl phases: transitions between metallic and ionic bonding[J].Angewandte Chemie International Edition,1973,12(9): 694-712.

[22] He H, Stearrett R, Nowak E R, et al. BaGa2Pn2 (Pn=P, As): new semiconducting phosphides and arsenides with layered structures[J].Inorganic Materials,2010,49(17): 7935-7940.

[23] Donohue P C. Synthesis, structure, and superconducting properties of new high-pressure forms of tin phosphide[J].Inorganic Chemistry,1970,9(2): 335-337.

[24] Goodyear J, Steigmann G A. The crystal structure of α-CdP2[J].Acta Crystallographica Section B, Structural Science,1969,25(11): 2371-2374.

[25] Morozova V A, Marenkin S F, Semenenya T V, et al. Optical and photoelectric properties of CdAs2 single crystals[J].Inorganic Materials,1994,41(3): 212-216.

[26] Woo K E, Wang J, Wu K, et al. Mg-Si-As: an unexplored system with promising nonlinear optical properties[J].Advanced Functional Materials,2018,28(30): 1801589.1-1801589.10.

[27] Yu T, Wang S, Zhang X, et al. MnSiP2: a new mid-IR ternary phosphide with strong SHG effect and ultrabroad transparency range[J].Chemistry of Materials,2019,31(6): 2010-2018.

[28] Springthorpe A, Harrison J. MgSiP2: a new member of the II-IV-V2 family of semiconducting compounds[J].Nature,1969,222: 977-977.

[29] Xiao J, Zhu S, Zhao B, et al. Computation assessment of promising mid-infrared nonlinear optical materials Mg-IV-V2 (IV=Si, Ge, Sn; V=P, As): a first-principles study[J].Materials Research Express,2018,5: 035907.

[30] Feng K, Yin W, He R, et al. NaGe3P3: a new ternary germanium phosphide featuring an unusual [Ge3P7] ring[J].Dalton Transactions,2012,41(2): 484-489.

[31] Chen J, Lin C, Peng G, et al. BaGe2Pn2 (Pn=P, As): two congruent-melting non-chalcopyrite pnictides as mid- and Far-infrared nonlinear optical materials exhibiting large second harmonic generation effects[J].Chemistry of Materials,2019,31(24): 10170-10177.

[32] Mark J, Wang J, Wu K, et al. Ba2Si3P6: 1D nonlinear optical material with thermal barrier chains[J].Journal of the American Chemical Society,2019,141(30): 11976-11983.

[33] Pan M, Ma Z, Liu X, et al. Ba4AgGa5Pn8 (Pn=P, As): new pnictide-based compounds with nonlinear optical potential[J].Journal of Materials Chemistry C,2015,3(37): 9695-9700.

陈金东, 林晨升, 叶宁. 磷属化物非线性光学晶体研究进展[J]. 人工晶体学报, 2020, 49(8): 1405. CHEN Jindong, LIN Chensheng, YE Ning. Research Progress on Pnictide Nonlinear Optical Crystals[J]. Journal of Synthetic Crystals, 2020, 49(8): 1405.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!