光子学报, 2020, 49 (7): 0724002, 网络出版: 2020-08-25   

用于生物传感的相位调制的铝膜-石墨烯结构

Aluminum-graphene Structure Based on Phase Modulation Employed for Biosensing
作者单位
1 广西师范大学 物理科学与技术学院, 广西 桂林 541004
2 深圳大学 物理与光电工程学院, 广东 深圳 518061
引用该论文

李勇萍, 刘军贤, 袁玉峰. 用于生物传感的相位调制的铝膜-石墨烯结构[J]. 光子学报, 2020, 49(7): 0724002.

Yong-ping LI, Jun-xian LIU, Yu-feng YUAN. Aluminum-graphene Structure Based on Phase Modulation Employed for Biosensing[J]. ACTA PHOTONICA SINICA, 2020, 49(7): 0724002.

参考文献

[1] TANABE I, TANAKA Y Y, WATARI K. Aluminum film thickness dependence of surface plasmon resonance in the far-and deep-ultraviolet regions[J]. Chemistry Letters, 2017, 46(10): 1560-1563.

[2] TANABE I, TANAKA Y Y, WATARI K. Direct optical measurements of far-and deep-ultraviolet surface plasmon resonance with different refractive indices[J]. Optics Express, 2016, 24(19): 21886-21896.

[3] MAEDA K, AN D, KUMARA RANASINGHE C S. Characterization of silver species on graphitic carbon nitribe nanosheets as promoters for photocatalytic carbon dioxide reduction under visible light with a mononuclear ruthenium(Ⅱ) complex[J]. Journal of Materials Chemistry A, 2018, 6(20): 9708-9715.

[4] VERMA R K, GUPTA B D. Surface plasmon resonance based fiber optic sensor for the IR region using a condcting metal oxide film[J]. Journal of the Optical Society of America A: Optics, Image Science and Vision, 2010, 27(4): 846-851.

[5] WU Lei-ming, JIA Yue, JIANG Le-yong. Sensitivity improved SPR biosensor based on the MoS2/graphene-aluminum hybrid structure[J]. Journal of Lightwave Technology, 2017, 35(1): 82-87.

[6] TANABE I, TANAKA Y Y, WATARI K. Far-and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films[J]. Scientific Reports, 2017, 7(1): 5934.

[7] CANALEJAS-TEJERO V, HERRANZ S, BELLINGHAMe A. Passivated aluminum nanohole arrays for label-free biosensing applications[J]. ACS Applied Materials & Interfaces, 2014, 6(2): 1005-1010.

[8] RAJAN J, SHARMA A K. High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared[J]. Optics Letters, 2009, 34(6): 749-751.

[9] BIEDNOV M, LEBEDEVA T, SHPILOVUY P. Gold and aluminum based surface plasmon resonance biosensors:sensitivity enhancement[J]. Optical Sensors, 2015, 9506: 95061P.

[10] SUN Li-jun, DAI Fei, ZHANG Ji-cheng. The electrical resistivity of nanostructured aluminium films at low temperatures[J]. Journal of Physics D Applied Physics, 2017, 50(41): 415302.

[11] ZHAO Yu-da, XIE Yi-zhu, HUI Yeung-yu. Highly impermeable and transparent graphene as an ultra-thin protection barrier for Ag thin films[J]. Journal of Materials Chemistry C, 2013, 1(32): 4956-4961.

[12] PRASAI D, TUBERQUI J C, HARL R R. Graphene:corrosion-inhibiting coating[J]. ACS Nano, 2012, 6(2): 1102-1108.

[13] XU Hai-lin, WU Lei-ming, DAI Xiao-yu. An ultra-high sensitivity surface plasmon resonance sensor based on graphene-aluminum-graphene sandwich-like structure[J]. Journal of Applied Physics, 2016, 120(5): 091102-091229.

[14] LI Xue-song, CAI Wei-wei, AN J. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314.

[15] CAI Haoyuan, CUI Dafu, ZHANG Lulu. Surface plasmon resonance acteristic study of grapheneongold structure[C]. 201212th IEEE International Coference on Nanotechnology (IEEENANO), 2012: 13.

[16] GHOSH S, RAY M. Surface plasmon resonance structures in spectral interrogation using high refractive index prism materials for sensing of different amino acids[J]. Optical Engineering, 2014, 53(11): 117108.

[17] MAHARANA P K, JHA R, PADHY P. On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared[J]. Sensors and Actuators B: Chemical, 2015, 207(207): 117-122.

[18] BRUNA M, BORINI S. Optical constants of graphene layers in the visible range[J]. Applied Physics Letters, 2009, 94(3): 24-26.

[19] STAUBER T, PERES N M R, GEIM A K. Optical conductivity of graphene in the visible region of the spectrum[J]. Physical Review B, 2008, 78(8): 085432.

[20] ZHENG Gai-ge, ZOU Xin-juan, CHEN Yun-yun. Fano resonance in graphne-MoS2 heterostructure-based surface plasmon resonance biosensor and its potential applications[J]. Optical Materials, 2017, 66: 171-178.

[21] ZHANG Jiang-tao, 张 江涛, 顾 铮, GU Zheng, DENG Chuan-lu, 邓 传鲁. 表面等离子共振效应中传统近似理论与薄膜光学理论[J]. 光子学报, 2010, 39(7): 1216-1223.

[22] RUAN Ban-xian, YOU Qi, ZHU Jia-qi. Fano resonance in double waveguides with graphene for ultrasensitive biosensor[J]. Optics Express, 2018, 26(13): 16884.

[23] HUANG Tian-ye, ZENG Shu-wen, ZHAO Xiang. Fano resonance enhanced surface plasmon resonance sensors operating in near-infrared[J]. Photonics, 2018, 5(3): 23.

[24] WU Ying-cai, 吴 英才, GU Zheng-tian, 顾 铮𠀡. 表面等离子共振谱半波全宽的算法探讨[J]. 光子学报, 2010, 39(1): 53-56.

[25] EASTMENT R M, MEE C H B. Work function measurements on (100), (110) and (111) surfaces of aluminium[J]. Journal of Physics F: Metal Physics, 1973, 3(9): 1738-1745.

[26] LEENAERTS O, PARTOENS B, PEETERS F M. The work function of few-layer graphene[J]. Journal of Physics Condensed Matter, 2017, 29(3): 035003.

[27] NAIR R R, BLAKE P, GRIGORENKO A N. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308-1308.

[28] CUI Gan, BI Zhen-xiao, ZHANG Rui-yu. A comprehensive review on graphene-based anti-corrosive coatings[J]. Chemical Engineering Journal, 2019, 373: 104-121.

[29] LI Zhi-quan, 李 志全, 孟 晓云, MENG Xiao-yun, PU Rui-qi, 朴 瑞琦. 用表面等离子体共振原理检测湿度环境[J]. 光子学报, 2015, 44(6): 0624001.

李勇萍, 刘军贤, 袁玉峰. 用于生物传感的相位调制的铝膜-石墨烯结构[J]. 光子学报, 2020, 49(7): 0724002. Yong-ping LI, Jun-xian LIU, Yu-feng YUAN. Aluminum-graphene Structure Based on Phase Modulation Employed for Biosensing[J]. ACTA PHOTONICA SINICA, 2020, 49(7): 0724002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!