发光学报, 2016, 37 (12): 1445, 网络出版: 2016-12-06   

Ce3+-Yb3+共掺YAG荧光粉量子剪裁发光的浓度及温度特性

Concentration and Temperature Characteristics of Quantum Cutting Luminescence in Ce3+-Yb3+ Co-doped YAG Phosphor
作者单位
1 东南大学 电子科学与工程学院, 江苏 南京210096
2 三江学院 电子信息工程学院, 江苏 南京210012
摘要
采用高温固相法制备了不同掺杂浓度的YAG∶1%Ce3+,x%Yb3+ (x=5,10,15,20,25)系列荧光粉。在450 nm蓝光激发下, 测试了样品的发射光谱, 得到了中心波长在550 nm的可见宽带发射(Ce3+: 5d→4f)和1 030 nm的近红外发射(Yb3+: 2F5/2→2F7/2)。可见和近红外发射强度随Yb3+掺杂浓度的变化表明Ce3+到Yb3+存在能量传递过程, 并得到Yb3+的猝灭浓度为15%。在低温条件下(80~300 K)测试YAG∶1%Ce3+,15%Yb3+样品的发射光谱和拉曼光谱, 通过对其量子剪裁发光温度特性的分析, 描述了基质声子在Ce3+到Yb3+的能量传递过程中起到的重要作用。
Abstract
YAG∶1%Ce3+,x%Yb3+(x=5, 10, 15, 20, 25) phosphor was synthesized via the high temperature solid state method. The optical properties of the phosphor were characterized by photoluminescence (PL). Under the excitation of 450 nm, the visible broadband emission from Ce3+: 5d→4f with the central wavelength of 550 nm was observed. The NIR emission around 1 030 nm from Yb3+: 2F5/2→2F7/2 was also observed under the same excitation. The variation of emission intensity with the concentration of Yb3+ shows that the energy transfer exists between Ce3+ and Yb3+, and the quenching concentration of Yb3+ is 15%. For YAG∶1%Ce3+,15%Yb3+ sample, the emission spectra and Raman spectra were measured at low temperature (80-300 K). Based on the analyze of temperature characteristics of quantum cutting luminescence, the results show that the phonons of the host material play an important role in the energy transfer from Ce3+ to Yb3+.
参考文献

[1] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells [J]. J. Appl. Phys., 1961, 32(3): 510-519.

[2] VAN SARK W G J H M, MEIJERINK A, SCHROPP R E I, et al.. Enhancing solar cell efficiency by using spectral converters [J]. Sol. Energy Mater. Sol. Cells, 2005, 87(1-4): 395-409.

[3] RICHARDS B S. Luminescent layers for enhanced silicon solar cell performance: down-conversion [J]. Sol. Energy Mater. Sol. Cells, 2006, 90(9): 1189-1207.

[4] 付作岭,董晓睿,盛天琦, 等. 纳米晶体中稀土离子的发光性质及其变化机理研究 [J]. 中国光学, 2015, 8(1): 139-144.

    FU Z L, DONG X R, SHENG T Q, et al.. Luminescene properties and various mechanisms of rare earth ions in the nanocrystals [J]. Chin. Opt., 2015, 8(1): 139-144. (in Chinese)

[5] DENG K M, GONG T, HU L X, et al.. Efficient near-infrared quantum cutting in NaYF4∶Ho3+,Yb3+ for solar photovoltaics [J]. Opt. Express, 2011, 19(3): 1749-1754.

[6] SHAO L M, JING X P. Near-infrared luminescence of Tb3+-Yb3+ and Ce3+-Yb3+ co-doped Y3Al5O12[J]. ECS J. Solid State Sci. Technol., 2012, 1(1): R22-R26.

[7] ZHAO J, GUO C F, LI T. Near-infrared down-conversion and energy transfer mechanism of Ce3+-Yb3+ co-doped Ba2Y-(BO3)2Cl phosphors [J]. ECS J. Solid State Sci. Technol., 2016, 5(1): R3055-R3058.

[8] SONTAKKE A D, UEDA J, KATAYAMA Y, et al.. Role of electron transfer in Ce3+ sensitized Yb3+ luminescence in borate glass [J]. J. Appl. Phys., 2015, 117(1): 013105-1-7.

[9] ELLEUCH R, SALHI R, DESCHANVRES J L, et al.. Antireflective downconversion ZnO∶Er3+,Yb3+ thin film for Si solar cell applications [J]. J. Appl. Phys., 2015, 117(5): 055301-1-6.

[10] 张继森,张立国,任建岳,等. Ce3+和Yb3+共掺杂的Y3Al5O12可见及量子剪裁近红外发光性质 [J]. 发光学报, 2014, 35(8): 891-896.

    ZHANG J S, ZHANG L G, REN J Y, et al.. Properties of visible and NIR emissions with quantum cutting in Ce3+-Yb3+-codoped Y3Al5O12 powder materials [J]. Chin. J. Lumin., 2014, 35(8): 891-896. (in Chinese)

[11] 李云青,崔彩娥,黄平,等. Pr3+, Yb3+双掺的CaWO4荧光粉的近红外量子剪裁 [J]. 光子学报, 2015, 44(7): 0716001-1-5.

    LI Y Q, CUI C E, HUANG P, et al.. Near infrared quantum cutting in Pr3+, Yb3+ co-doped CaWO4 phosphors[J]. Acta Photon. Sin., 2015, 44(7): 0716001-1-5. (in Chinese)

[12] YE S, LI Y J, YU D C, et al.. Structural effects on Stokes and anti-Stokes luminescence of double-perovskite (Ba, Sr)2CaMoO6∶Yb3+,Eu3+ [J]. J. Appl. Phys., 2011, 110(1): 013517-1-5.

[13] YANG P Z, DENG P Z, YIN Z W. Concentration quenching in Yb∶YAG [J]. J. Lumin., 2002, 97(1): 51-54.

[14] TIAN B N, CHEN B J, TIAN Y, et al.. Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21∶Eu3+ phosphors [J]. J. Mater. Chem. C, 2013, 1(12): 2338-2344.

[15] BACHMANN V, RONDA C, MEIJERINK A. Temperature quenching of yellow Ce3+ luminescence in YAG∶Ce [J]. Chem. Mater., 2009, 21(10): 2077-2084.

[16] ZHOU J J, ZHUANG Y X, YE S, et al.. Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses [J]. Appl. Phys. Lett., 2009, 95(14): 141101-1-3.

[17] ZHENG W, ZHU H M, LI R F, et al.. Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4∶Tm3+,Yb3+ phosphors [J]. Phys. Chem. Chem. Phys., 2012, 14(19): 6974-6980.

[18] HUANG K, RHYS A. Theory of light absorption and non-radiative transitions in F-centres [J]. Proc. R. Soc. A, 1950, 204(1078): 406-423.

李路, 娄朝刚, 谢宇飞. Ce3+-Yb3+共掺YAG荧光粉量子剪裁发光的浓度及温度特性[J]. 发光学报, 2016, 37(12): 1445. LI Lu, LOU Chao-gang, XIE Yu-fei. Concentration and Temperature Characteristics of Quantum Cutting Luminescence in Ce3+-Yb3+ Co-doped YAG Phosphor[J]. Chinese Journal of Luminescence, 2016, 37(12): 1445.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!