中国激光, 2009, 36 (8): 2109, 网络出版: 2009-08-13   

用激光诱导击穿光谱技术定量分析矿石样品中Si和Mg

Quantitative Analysis of Si and Mg in Ore Samples Using Laser-Induced Breakdown Spectroscopy
作者单位
北京交通大学理学院, 北京 100044
摘要
激光诱导击穿光谱(LIBS)技术被用来定量分析矿石样品元素成分。波长为1064 nm的Nd∶YAG脉冲激光聚焦在样品表面后产生激光等离子体, 等离子体原子发射谱由微型光谱仪记录。为了优化实验条件, 研究了激光能量和延时时间等部分参数对谱线强度的影响。实验发现激光脉冲能量对光谱信号的影响大。在选定的变化范围内, 改变延时对光谱的影响较小。实验中分别以硅(Si I谱线251.6 nm)和镁(Mg I谱线285.2 nm)为分析线, 采用外定标法对硅和镁的含量进行了反演, 测得的硅和镁元素含量值与标准值的相对误差分别为7%和3%。
Abstract
Laser-induced breakdown spectroscopy (LIBS) was used to yield quantitative elemental information of ore samples. A Nd∶YAG laser beam with wavelength of 1064 nm was focused on the sample surface to generate laser plasma. The plasma atomic emission spectra were recorded by a micro-spectrometer. In order to optimize experimental condition, dependence of the spectral line intensity upon laser pulse energy and time delay of signal collection with respect to the initiating laser pulse were investigated. Strong influence of the laser pulse energy on the spectral signal was found in the experiments. However, time-delay had less effect on the spectra within the range of the selected time delays. Spectral lines of silicon (Si I line at 251.6 nm) and magnesium (Mg I line at 285.2 nm) were separately used to determine, the silicon and magnesium contents in the samples based on the external standard method. The relative standard deviations (RSDs) of the measured elemental contents relative to those standard values were 7% and 3% respectively for the silicon and magnesium elements. It provides a basis for the feasibility of rapid detection and elementary analysis with the laser-induced breakdown spectroscopic technique.
参考文献

[1] . Sun, M.Tran, B. W.Smith et al.. Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy[J]. Analytica Chimica Acta, 2000, 413(1): 187-195.

[2] . Fichet, M. Tabarant, B. Salle et al.. Comparison between LIBS and ICP/OES[J]. Anal. Bioanal. Chem., 2006, 385(2): 338-344.

[3] . . An experimental investigation on the property of the laser-induced breakdown spectroscopy[J]. Journal of Atomic and Molecular Physics, 2007, 24(1): 25-30.

[4] . S. Zhang, F. Y. Yueh, J. P. Singh. Laser-induced breakdown spectroscopy as a multimetal continuous-emission monitor[J]. Appl. Opt., 1999, 38(9): 1459-1466.

[5] . F. Bustamante, C. A. Rinaldi, J. C. Ferrero. Laser induced breakdown spectroscopy characterization of Ca in a soil depth profile[J]. Spectrochimica Acta Part B, 2002, 57(1): 303-309.

[6] . 铅黄铜合金激光诱导击穿谱特性的实验研究[J]. 原子与分子物理学报, 2007, 24(1): 25-30.

    . Bousquet, J. B. Sirven, L. Canioni. Towards quantitative laser-induced breakdown apectroscopy analysis of soil samples[J]. Spectrochimica Acta Part B, 2007, 62(12): 1582-1589.

[7] Rong Shu, Hongxing Qi, Gang Lü et al.. Laser-induced breakdown spectroscopy based detection of lunar soil simulants for moon exploration[J]. Chin. Opt. Lett., 2007, 5(1): 58~59

[8] . E. Carranza, B. T. Fisher, D Yoder et al.. On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B, 2001, 56(2): 851-856.

[9] 余亮英, 陆继东, 陈文 等. 用激光感生击穿光谱对大气进行定量分析[J]. 应用光学, 2006,27(2):147~151

    Xu Liangying, Lu Jidong, Chen Wen et al.. Quantitative analysis of atmosphere by laser-induced breakdown spectroscopy[J]. Applied Optics, 2006, 27(2):147~151

[10] . 环境气体的压力和性质对LIBS信号影响的实验研究[J]. 原子与分子物理学报, 2004, 21(4): 285-288.

    . . An experiment investigation on the influence of the pressure and kinds of the buffer gas on the lIBS signal[J]. Journal of Atomic and Molecular Physics, 2004, 21(4): 285-288.

[11] . Yoon, T. Kim, M. Yang et al.. Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy[J]. Microchemical Journal, 2001, 68(1): 251-256.

[12] . . Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements[J]. Spectrochimica Acta Part B, 2004, 59(9): 1413-1422.

[13] . L. Death, A. P. Cunningham, L. J. Pollard. Multi-element analysis of iron ore pellets by laser-induced breakdown spectroscopy and principal components regression[J]. Spectrochimica Acta Part B, 2008, 63(7): 763-769.

[14] . 激光感生击穿光谱技术在燃烧诊断中的应用[J]. 华南理工大学学报(自然科学版), 2007, 35(10): 185-193.

    . Application of laser-induced breakdown spectroscopy to combustion diagnosis[J]. Journal of South China University of Technology(Natural Science Edition), 2007, 35(10): 185-193.

[15] 郭庆林, 周玉龙, 张秋琳 等. 激光微等离子体光谱分析法测定土壤中的铝钙[J]. 光谱学与光谱分析, 2008, 28(1):200~202

    Guo Qinglin, Zhou Yulong, Zhang Qiulin et al.. Determination of Al and Ca in soil by laser micro-plasma spectroscopy[J]. Spectroscopy and Spectral Analysis, 2008, 28(1):200~202

[16] . 利用激光诱导击穿光谱技术定性分析矿石成分[J]. 中国科技信息, 2007, 9: 21-22.

    . Qualitative elemental analysis in the minerals with the laser induced breakdown spectroscopic method[J]. China Science and Technology Information, 2007, 9: 21-22.

[17] 陈金忠, 史金超, 张晓萍. 激光等离子体光谱法定量分析土壤中元素Fe和Ti[J]. 应用激光, 2007, 27(1): 33~36

    Chen Jinzhong, Shi Jinchao, Zhang Xiaoping. Quantitative analysis of Fe and Ti elements in soil samples using laser-induced plasma spectroscopy[J]. Applied Laser, 2007, 27(1):33~36

[18] Li Wang, Chijian Zhang, Yuan Feng. Controlled calibration method for laser induced breakdown spectroscopy[J]. Chin. Opt. Lett., 2008, 6(1): 5~8

[19] 吴金泉, 张文艳, 邵秀琴 等. 利用激光击穿光谱探测模拟体液[J]. 中国激光, 2008, 35(3):445~447

    Wu Jinquan, Zhang Wenyan, Shao Xiuqin et al.. Simulated body fluid by laser-induced breakdown spectroscopy[J]. Chinese J. Lasers, 2008, 35(3):445~447

陆运章, 汪家升, 李威霖, 郑剑杰. 用激光诱导击穿光谱技术定量分析矿石样品中Si和Mg[J]. 中国激光, 2009, 36(8): 2109. Lu Yunzhang, Wang Jiasheng, Li Weilin, Zheng Jianjie. Quantitative Analysis of Si and Mg in Ore Samples Using Laser-Induced Breakdown Spectroscopy[J]. Chinese Journal of Lasers, 2009, 36(8): 2109.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!