发光学报, 2017, 38 (9): 1129, 网络出版: 2017-10-17   

GdNbO4∶Er3+/Yb3+荧光粉的上转换发光与温度特性

Upconversion Luminescence and Temperature Characteristics of GdNbO4∶Er3+/Yb3+ Phosphors
作者单位
1 辽宁工业大学 机械工程与自动化学院, 辽宁 锦州 121001
2 辽宁工业大学 化学与环境工程学院, 辽宁 锦州 121001
3 辽宁工业大学 理学院, 辽宁 锦州 121001
摘要
采用传统高温固相法制备了GdNbO4∶10%Yb3+,x%Er3+荧光粉。利用XRD对样品的晶体结构进行了分析, 结果表明所得的样品为纯相。在980 nm 光纤激光器激发下, 测量了样品的上转换发射光谱, 实验发现样品发生了浓度猝灭。利用荧光强度比(FIR) 方法研究了GdNbO4∶Yb3+/Er3+荧光粉的温度传感特性, 结果表明灵敏度随温度的升高先增大后减小。建立了Er3+的两个绿色发射能级的温度猝灭物理模型并用其成功解释了样品的绿色上转换发光温度猝灭现象。
Abstract
A series of Er3+/Yb3+ co-doped phosphors with various Er3+ concentrations were synthesized via the conventional high temperature solid state method. The crystal structure of the obtained phosphor was analyzed by means of X-ray diffraction (XRD). The results show that the doping concentration do not evoke the change in crystal structure. The upconversion emission spectra for the phosphors doped with various Er3+ concentrations were measured upon 980 nm excitation under the same experimental conditions. The results show that the concentration quenching occurs at a higher concentration. The optical temperature sensing properties based on the fluorescence intensity ratio (FIR) method were discussed by analyzing intensities ratio of 2H11/2 and 4S3/2 emission with the temperature. It is observed that the sensitivity increases first and then decreases with the increase of temperature, and the sensitivity is the highest at 180 ℃. A physical model involving radiative/nonradiative transitions and thermal excitation of 2H11/2 and 4S3/2 emission is established, and the temperature quenching of the phenomenon is explained successfully.
参考文献

[1] 王轶卓, 张艳秋, 林成新, 等. 温度对ALn(MoO4)2∶Er3+荧光粉发光性质的影响 [J]. 发光学报, 2015, 36(12):1355-1362.

    WANG Y Z, ZHANG Y Q, LIN C X, et al.. Temperature dependence of fluorescent properties of ALn(MoO4)2∶Er3+ phosphors [J]. Chin. J. Lumin., 2015, 36(12):1355-1362. (in Chinese).

[2] 郑龙江, 高晓阳, 刘海龙, 等. 980 nm LD泵浦Er3+/Yb3+共掺Y2O3纳米粉所致热效应的研究 [J]. 光谱学与光谱分析, 2013, 33(1):151-154.

    ZHENG L J, GAO X Y, LIU H L, et al.. The heating effect of the Er3+/Yb3+ doped Y2O3 nanometer powder by 980 nm laser diode pumping [J]. Spectrosc. Spect. Anal., 2013, 33(1):151-154. (in Chinese)

[3] 林杨杨, 陈铠炀, 唐霞艳, 等. Er3+/Yb3+共掺杂氧氟硼硅酸盐微晶玻璃绿色上转换发光的温度特性 [J]. 发光学报, 2015, 36(9):1001-1005.

    LIN Y Y, CHEN K Y, TANG X Y, et al.. Temperature characteristic of green upconversion luminescence in Er3+/Yb3+ codoped oxyfluoride borosilicate glass ceramics [J]. Chin. J. Lumin., 2015, 36(9):1001-1005. (in Chinese)

[4] LI D Y, TIAN L L, HUANG Z, et al.. Optical temperature sensor based on infrared excited green upconversion emission in hexagonal phase NaLuF4∶Yb3+/Er3+ nanorods [J]. J. Nanosci. Nanotechnol., 2016, 16(4):3641-3645.

[5] ZHENG H, CHEN B J, YU H Q, et al.. Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures [J]. J. Colloid Interf. Sci., 2014, 420:27-34.

[6] SAVCHUK O A, CARVAJAL J J, CASCALES C, et al.. Benefits of silica core-shell structures on the temperature sensing properties of Er, Yb∶GdVO4 up-conversion nanoparticles [J]. ACS Appl. Mater. Inter., 2016, 8(11):7266-7273.

[7] HAO S W, CHEN G Y, YANG C H. Sensing using rare-earth-doped upconversion nanoparticles [J]. Theranostics, 2013, 3(5):331-345.

[8] WANG F, BANERJEE D, LIU Y S, et al.. Upconversion nanoparticles in biological labeling, imaging, and therapy [J]. Analyst, 2010, 135(8):1839-1854.

[9] TIAN Y, HUA R N, YU N Q, et al.. Morphology and phase evolvement of Yb3+/Er3+ co-doped NaYF4 microtubes prepared with YF3 submicrospindles as precursor [J]. J. Alloys Compd., 2011, 509(41):9924-9929.

[10] 杨健芝, 邱建备, 杨正文, 等. Ba5SiO4Cl6∶Yb3+, Er3+, Li+荧光粉的制备及上转换发光性质研究 [J]. 物理学报, 2015, 64(13):0138101-1-6.

    YANG J Z, QIU J B, YANG Z W, et al.. Preparation and up conversion luminescence prop erties of Ba5SiO4Cl6∶Yb3+, Er3+, Li+ phosphors [J]. Acta Phys. Sinica, 2015, 64(13):0138101-1-6. (in Chinese)

[11] HUO L L, ZHOU J J, WU R Z, et al.. Dual-functional β-NaYF4∶Yb3+, Er3+ nanoparticles for bioimaging and temperature sensing [J]. Opt. Mater. Express, 2016, 6(4):1056-1064.

[12] LI Y, PAN Y. Influence of Yb3+ doping concentration on upconversion luminescence of Er3+ in Lu2O3 phosphor [J]. Optik-Int. J. Light Electron Opt., 2013, 124(21):5131-5134.

[13] NOH H M, YANG H K, MOON B K, et al.. Effect of Yb3+ concentrations on the upconversion luminescence properties of ZrO2∶Er3+, Yb3+ phosphors [J]. Jan. J. Appl. Phys., 2013, 52(1S):765-773.

[14] ZHANG D L, HUA R N, CUI Y M, et al.. Absorption and emission characteristics of Er3NbO7 phosphor: a comparison with ErNbO4 phosphor and Er∶LiNbO3 single crystal [J]. J. Lumin., 2007, 127(2):453-460.

[15] HSIAO Y J, FANG T H, CHANG Y S, et al.. Structure and luminescent properties of LaNbO4 synthesized by sol-gel process [J]. J. Lumin., 2007, 126(2):866-870.

[16] CAO Y, DUAN N Q, YAN D, et al.. Enhanced electrical conductivity of LaNbO4 by A-site substitution [J]. Int. J. Hydrogen Energy, 2016, 41(45):20633-20639.

[17] 谭晓靓, 蒋庆辉, 张庆礼, 等. Nd∶GdNbO4的制备、结构与发光 [J]. 量子电子学报, 2011, 28(5):551-557.

    TAN X L, JIANG Q H, ZHANG Q L, et al.. Preparation, structure and luminescence of Nd∶GdNbO4[J]. Chin. J. Quan. Electron., 2011, 28(5):551-557. (in Chinese)

[18] 李树伟, 孙佳石, 石琳琳, 等. 掺杂浓度对BaGd2ZnO5∶Er3+/Yb3+荧光粉上转换发光的影响 [J]. 光子学报, 2015, 44(8):127-132.

    LI S W, SUN J S, SHI L L, et al.. Influence of doping concentration on the upconversion luminescence in BaGd2ZnO5∶Er3+/Yb3+ [J]. Acta Photon. Sinica, 2015, 44(8):127-132. (in Chinese)

[19] TIAN B N, CHEN B J, TIAN Y, et al.. Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21∶Eu3+ phosphors [J]. J. Mater. Chem. C, 2013, 1(12):2338-2344.

[20] ZHENG H, CHEN B J, YU H Q, et al.. Influence of microwave hydrothermal reaction factor on the morphology of NaY(MoO4)2 nano-/micro-structures and luminescence properties of NaY(MoO4)2∶Tb3+[J]. RSC Adv., 2015, 5(69):56337-56347.

[21] TIAN Y, CHEN B J, HUA R N, et al.. Self-assembled 3D flower-shaped NaY(WO4)2∶Eu3+ microarchitectures: microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties [J]. Crystengcomm, 2012, 14(5):1760-1769.

[22] ZHOU T M, ZHANG Y Q, WU Z L, et al.. Concentration effect and temperature quenching of upconversion luminescence in BaGd2ZnO5∶Er3+/Yb3+ phosphor [J]. J. Rare Earths, 2015, 33(7):686-692.

[23] TIAN Y Y, TIAN Y, HUANG P, et al.. Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route [J]. Chem. Eng. J., 2016, 297:26-34.

[24] MCLAURIN E J, BRADSHAW L R, GAMELIN D R. Dual-emitting nanoscale temperature sensors [J]. Chem. Mater., 2013, 25(8):1283-1292.

[25] LEON-LUIS S L, RODRIGUEZ-MENDOZA U R R, MARTIN I R, et al.. Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors [J]. Sens. Actuators B: Chem., 2013, 176:1167-1175.

吴中立, 吴红梅, 姚震, 唐立丹, 戴晓春, 郭宇. GdNbO4∶Er3+/Yb3+荧光粉的上转换发光与温度特性[J]. 发光学报, 2017, 38(9): 1129. WU Zhong-li, WU Hong-mei, YAO Zhen, TANG Li-dan, DAI Xiao-chun1, GUO Yu. Upconversion Luminescence and Temperature Characteristics of GdNbO4∶Er3+/Yb3+ Phosphors[J]. Chinese Journal of Luminescence, 2017, 38(9): 1129.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!