Journal of Innovative Optical Health Sciences, 2017, 10 (2): 1650040, Published Online: Dec. 27, 2018  

Surface functionalization of SPR chip for specific molecular interaction analysis under flow condition

Author Affiliations
1 Department of Ophthalmology, Shanxi Eye Hospital, Taiyuan 030002, P. R. China
2 Department of Ophthalmology, Xin Hua hospital affiliated to Shanghai, JiaoTong University School of Medicine, Shanghai 200092, P. R. China
3 Department of Ophthalmology, MinHang Hospital, Affiliated to Fudan University, Shanghai 201199, P. R. China
4 Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of optical imaging and sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P. R. China
5 Department of Physics, Tsinghua University, Beijing 100084, P. R. China
Abstract
Surface functionalization of sensor chip for probe immobilization is crucial for the biosensing applications of surface plasmon resonance (SPR) sensors. In this paper, we report a method circulating the dopamine aqueous solution to coat polydopamine film on sensing surface for surface functionalization of SPR chip. The polydopamine film with available thickness can be easily prepared by controlling the circulation time and the biorecognition elements can be immobilized on the polydopamine film for specific molecular interaction analysis. These opera-tions are all performed under flow condition in the fluidic system, and have the advantages of easy implementation, less time consuming, and low cost, because the reagents and devices used in the operations are routinely applied in most laboratories. In this study, the specific absorption between the protein A probe immobilized on the sensing surface and human immunoglobulin G in the buffer is monitored based on this surface functionalization strategy to demonstrated its feasibility for SPR biosensing applications.
References

[1] Cooper M. A., Label-free Biosensors: Techniques and Applications (Cambridge University Press, New York, 2009).

[2] Homola J., Surface plasmon resonance sensors for detection of chemical and biological species, Chem. Rev. 108 (2008) 462–492.

[3] Karlsson R., SPR for molecular interaction analysis: a review of emerging application areas, J. Mol. Recogn. 17 (2004) 151–161.

[4] Homola J., Yee S. S. and Gauglitz G., Surface plasmon resonance sensors: review, Sens. Actuators B, Chem. 54 (1999) 3–15.

[5] Liu L., Ma S. H., Ji Y. H., Chong X. Y., Liu Z. Y., He Y. H. and Ma H., A two-dimensional polarization interferometry based parallel scan angular surface plasmon resonance biosensor, Rev. of Sci. Instrum. 82 (2011) 023109.

[6] Springer T. and Homola J., Biofunctionalized gold nanoparticles for SPR-biosensor-based detection of CEA in blood plasma, Anal. Bioanal. Chem. 404 (2012) 2869–2875.

[7] Suherman , Morita K. and Kawaguchi T., Effect of alkanethiol molecular structure on sensitivity of surface plasmon resonance sensor, Sens. Actuators B, Chem 210 (2015) 768–775.

[8] Zhang P. F., Liu L., He Y. H., Ji Y. H., Guo J. and Ma H., Temperature-regulated surface plasmon resonance imaging system for bioaffinity sensing, Plasmonics 11 (2016) 771–779.

[9] Lee H., Dellatore S. M., Miller W. M. and Messersmith P. B., Mussel-inspired surface chemistry for multifunctional coatings, Science 318 (2007) 426–430.

[10] Zhou P., Deng Y., Lyu B., Zhang R., Zhang H., Ma H., Lyu Y. and Wei S., Rapidly-deposited polydopamine coating via high temperature and vigorous stirring, formation, characterization and biofunctional evaluation, Plos One 9 (2014) e113087.

[11] Shi H., Liu Z. Y., Wang X. X., Guo J., Liu L., Luo L., Guo J. H., Ma H., Sun S. Q. and He Y. H., A symmetrical optical waveguide based surface plasmon resonance biosensing system, Sens. Actuators B, Chem. 185 (2013) 91–96.

[12] Li A., Guo Z. Y., Peng Q., Du C., Han X., Liu L., Guo J., He Y. H. and Ji Y. H., A saccharides sensor developed by symmetrical optical waveguide-based surface plasmon resonance, J. Innov. Opt. Health Sci. 8 (2015) 1550003. Link,

[13] Liu Z. Y., Peng Q., Shi H., Sun S. Q., Guo J., Wang X. X., Liu L., Ji Y. H., Guo J. H., Ma H. and He Y. H., MgF2-Au-MgF2-polydopamine based surface plasmon resonance sensor and its application in biomedical systems, Analy. Methods 5 (2013) 6306–6311.

[14] Rego S. J., Vale G. M., Luz G. M., Mano J. F. and Alves N. M., Adhesive bioactive coatings inspired by sea life, Langmuir 32 (2016) 560–568.

[15] Zhang P. F., Liu L., He Y. H., Xu Z. H., Ji Y. H. and Ma H., One-dimensional angular surface plasmon resonance imaging based array thermometer, Sens. Actuators B, Chem. 207 (2015) 254–261.

[16] Zhang P. F., Liu L., He Y. H., Shen Z. Y., Guo J., Ji Y. H. and Ma H., Non-scan and real-time multichannel angular surface plasmon resonance imaging method, Appl. Opt. 53 (2014) 6037–6042.

[17] Piliarik M. and Homola J., Surface plasmon resonance (SPR) sensors, approaching their limits, Opt. Exp. 17 (2009) 16505–16517.

[18] Zhang P. F., Liu L., He Y. H., Ji Y. H. and Ma H., Self-referenced plasmon waveguide resonance sensor using different waveguide modes, J. Sens. 2015 (2015) 945908.

[19] Leeden M. C., Are conformational changes, induced by osmotic pressure variations, the underlying mechanism of controlling the adhesive activity of mussel adhesive proteins , Langmuir 21 (2005) 11373–11379.

[20] Lee H., Rho J. and Messersmith P. B., Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coating, Adv. Mater. 21 (2009) 431–434.

[21] Liu Y. X., Liu L., He Y. H., Zhu L. and Ma H., Decoding of quantum dots encoded microbeads using a hyperspectral fluorescence imaging method, Anal. Chem. 87 (2015) 5286–5293.

[22] Liu Y. X., Liu L., He Y. H., He Q. H. and Ma H., Quantum-dots-encoded-microbeads based molecularly imprinted polymer, Biosens. Bioelectron. 77 (2016) 886–893.

Tao Ma, Xiaoxia Chen, Qing Peng, Pengfei Zhang, Yonghong He. Surface functionalization of SPR chip for specific molecular interaction analysis under flow condition[J]. Journal of Innovative Optical Health Sciences, 2017, 10(2): 1650040.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!