激光与光电子学进展, 2017, 54 (7): 071002, 网络出版: 2017-07-05   

一种基于Tsallis相对熵的图像分割阈值选取方法

A Threshold Selection Method for Image Segmentation Based on Tsallis Relative Entropy
作者单位
1 湖南文理学院洞庭湖生态经济区建设与发展湖南省协同创新中心, 湖南 常德 415000
2 湖南文理学院计算机科学与技术学院, 湖南 常德 415000
摘要
在工业实践中,成像环境恶劣且难以控制,导致图像复杂。对复杂成像条件下的图像实施分割并不容易,针对这一问题,结合Tsallis相对熵及高斯分布提出一种新的图像阈值分割方法。该方法运用高斯分布拟合分割后图像直方图分布信息,将Tsallis相对熵做为分割前后图像直方图信息损失的度量工具。在对图像实施分割时,通过在图像灰度级范围内对自定义的准则函数最小化获取最佳分割阈值。最终将该方法与已有方法在工业无损检测及合成孔径雷达图像的分割实验中进行对比。结果表明,该方法获得的结果视觉效果好、分割精度高、误差小而且算法耗时较少,因此具有较好的应用推广前景。
Abstract
In the field of industrial practice, the images are complicated because the conditions of imaging are usually poor and difficult to control. The image segmentation for complex imaging conditions is not easy. To solve this problem, a new threshold segmentation method is proposed based on Tsallis relative entropy and Gaussian distribution. In the method, the gray level histogram of image after segmentation is fitted by Gaussian distribution, and the difference between the histogram of original image and the fitted histogram is measured by Tsallis relative entropy. The optimal threshold is determined by minimizing the Tsallis relative entropy. Finally, the performance of the proposed method is compared with the several methods on segmentation of non-destructive testing images and synthetic aperture radar image. The results demonstrate that the proposed method has better visual effect, higher precision of segmentation, smaller segmentation error and less computational time. Thus, the proposed method has a good prospect in further applications.
参考文献

[1] 杨爱萍, 白煌煌. 基于Retinex 理论和暗通道先验的夜间图像去雾算法[J]. 激光与光电子学进展, 2017, 54(4): 041002.

    Yang Aiping, Bai Huanghuang. Nighttime image defogging based on the theory of Retinex and dark channel prior[J]. Laser & Optoelectronics Progress, 2017, 54(4): 041002.

[2] Cai H, Yang Z, Cao X, et al. A new iterative triclass thresholding technique in image segmentation[J]. IEEE Transactions on Image Processing, 2014, 23(3): 1038-1046.

[3] 王苏恺, 潘晋孝, 陈 平. 基于结构连续先验的CT图像序列自适应分割算法[J]. 激光与光电子学进展, 2016, 53(11): 111006.

    Wang Sukai, Pan Jinxiao, Chen Ping. Adaptive segmentation algorithm for CT image sequence based on structure continuity as prior information[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111006.

[4] Moser G, Serpico S B. Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2972-2982.

[5] 李安冬, 林再平, 安 玮, 等. 基于自适应改进的压缩域红外弱小目标检测[J]. 中国激光, 2015, 42(10): 1008003.

    Li Andong, Lin Zaiping, An Wei, et al. Infrared small target detection in compressive domain based on self-adaptive parameter configuration[J]. Chinese J Lasers, 2015, 42(10): 1008003.

[6] 苏 娟, 李 冰, 王延钊. 结合PCNN分割和模糊集理论的红外图像增强[J]. 光学学报, 2016, 36(9): 0910001.

    Su Juan, Li Bing, Wang Yanzhao. Infrared image enhancement based on PCNN segmentation and fuzzy set theory[J]. Acta Optica Sinica, 2016, 36(9): 0910001.

[7] 王 博, 万 磊, 李 晔, 等. 基于自适应脉冲耦合神经网络的水下激光图像分割方法[J]. 光学学报, 2015, 35(4): 0410004.

    Wang Bo, Wan Lei, Li Ye, et al. Underwater laser image segmentation method based on adaptive pulse coupled neural networks[J]. Acta Optica Sinica, 2015, 35(4): 0410004.

[8] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man and Cybernetics, 1979, 9(1): 62-66.

[9] Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision Graphics and Image Processing, 1985, 29(3): 273-285.

[10] Kittler J, Illingworth J. Minimum error thresholding[J]. Pattern Recognition, 1986, 19(1): 41-47.

[11] Li C H, Lee C K. Minimum cross entropy thresholding[J]. Pattern Recognition, 1993, 26(4): 617-625.

[12] Sahoo P, Wilkins C, Yeager J. Threshold selection using Renyi′s entropy[J]. Pattern Recognition, 1997, 30(1): 71-84.

[13] Albuquerque M P D, Esquef I A, Mello A R G, et al. Image thresholding using Tsallis entropy[J]. Pattern Recognition Letters, 2004, 25(9): 1059-1065.

[14] Sahoo P K, Arora G. Image thresholding using two-dimensional Tsallis-Havrda-Charvát entropy[J]. Pattern Recognition Letters, 2006, 27(6): 520-528.

[15] Tang Y G, Di Q Y, Guan X P. Fast recursive algorithm for two-dimensional Tsallis entropy thresholding method[J]. Journal of Systems Engineering and Electronics, 2009, 20(3): 619-624.

[16] 唐英干, 邸秋艳, 赵立兴, 等. 基于二维最小Tsallis交叉熵的图像阈值分割方法[J]. 物理学报, 2009, 58(1): 9-15.

    Tang Yinggan, Di Qiuyan, Zhao Lixing, et al. Image thresholding segmentation based on two-dimensional minimum Tsallis-cross entropy[J]. Acta Physica Sinica, 2009, 58(1): 9-15.

[17] 吴诗婳, 吴一全, 周建江. 基于Tsallis交叉熵快速迭代的河流遥感图像分割[J]. 信号处理, 2016, 32(5): 598-607.

    Wu Shihua, Wu Yiquan, Zhou Jianjiang. Thresholding for remote sensing images of rivers based on a fast iterative algorithm of two-dimensional Tsallis cross entropy[J]. Journal of Signal Processing, 2016, 32(5): 598-607.

[18] Tsallis C. Generalized entropy-based criterion for consistent testing[J]. Physical Review E, 1998, 58(2): 1442-1445.

[19] Furuichi S, Yanagi K, Kuriyama K. Fundamental properties of Tsallis relative entropy[J]. Journal of Mathematical Physics, 2004, 45(12): 4868-4877.

[20] Sezgin M. Automatic image thresholding software[EB/OL]. [2017-02-09]. http://mehmetsezgin.net.

[21] Guo Y, Cheng H D. New neutrosophic approach to image segmentation[J]. Pattern Recognition, 2009, 42(5): 587-595.

聂方彦, 李建奇, 张平凤, 屠添翼. 一种基于Tsallis相对熵的图像分割阈值选取方法[J]. 激光与光电子学进展, 2017, 54(7): 071002. Nie Fangyan, Li Jianqi, Zhang Pingfeng, Tu Tianyi. A Threshold Selection Method for Image Segmentation Based on Tsallis Relative Entropy[J]. Laser & Optoelectronics Progress, 2017, 54(7): 071002.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!